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Abstract
Many physical systems give rise to dynamical behavior leading to cuspidal shapeswhich represent a
singularity of the governing equation. The cusp tip often exhibits self-similarity as well, indicative of
scaling symmetry invariant in time up to a change of scale. Cuspidal shapes even occur in liquid
systemswhen the driving force for fluid elongation is sufficiently strong to overcome leveling by
capillarity. In almost all cases reported in the literature, however, themoving interface is assumed to
be shear-free and the operable forces orient exclusively in the direction normal to the advancing
boundary.Herewe focus on a system inwhich a slender liquid film is exposed to large thermocapillary
stresses, a systempreviously shown to undergo a linear instability resemblingmicrolens arrays.We
demonstrate by analytic and numericalmeans how in the nonlinear regime runaway thermocapillary
forces induce cuspidal formations terminated by a conical tipwhose slope is given by an analytic
relation.On a fundamental level, thisfinding broadens our understanding of known categories of
flows that can generate cuspidal forms.More practically, the system examined here introduces a
potentially novel lithographicmethod for one-step non-contact fabrication of cuspidalmicroarrays.

1. Cusp formation in physical systems

Despite that capillary forces always act to repress regions of high curvature, nature nonetheless finds clever ways
of forming and sustaining cusps inmany physical systems. In fact, cusps are rather ubiquitous and occur in such
diverse phenomena as thermal grooving at grain boundaries [1], surface diffusion and pinchoff in annealed or
sintered systems [2], complex plasma formations [3], wavefront propagation in systems described by the linear
[4] or nonlinear Schrödinger equation [5], critically charged droplets [6], microbranching instabilities in fast
moving cracks [7], line attractor states in neural computationmodels [8], evaporative dryout in liquidfilms [9]
andmanymore. A recent delightful book by J Eggers [10] describes aswell the complex dynamics governing
cusp formation inmany liquid systems including thread and droplet breakup,Hele-Shaw sinkflow, and thin
film rupture caused by a negative disjoining pressure [2, 11, 12]. The latter system sketched infigures 1(a) and (b)
shows that the receding air/liquid interface traces a cusp.

In these and other systems [14–18], the apical region of the evolving cusp exhibits self-similar behavior
characterized by universal exponents, some ofwhich have been confirmed experimentally [19–23]. The
resulting power laws stem from scaling symmetries that are invariant in time up to a change of scale. In almost all
cases reported in the literature, however, themoving interface is assumed to be shear-free and the operable
surface forces orient exclusively in the direction normal to the advancing boundary. The interface therefore
experiences no shear force and therefore plays no active role in corralling fluid into a sharpened tip.
Krechetnikov has recently conducted elegant analyses of chemically driven tip streaming emanating from
conical singularities in self-drivenMarangoni systems; however, those studies have had to assume steady state
(i.e. time independent)flows since the dynamics of cusp formation there remains an unsolved problem [24, 25].
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To explore further the possibility of cuspidal formation driven by shear forces at a free interface, we here
focus on nanoscale liquidfilms confined by a geometry designed to elicit self-reinforcing thermocapillary
stresses at the air/liquid interface.We analyze the dynamics bywhich the ensuant self-similar process gives rise
tofluid elongations resembling cuspidal shapes whose conical tips promote self-focusing. Shown infigures 1(c)
and (d) are examples of thermocapillary driven line and point cuspidal formations caused by runaway
thermocapillary forces.Whilefigures 1(a) and (b) depict cusp formation arising from forces exclusively oriented
normal to the free interface (disjoining pressure counterbalanced by capillary pressure),figures 1(c) and (d)
depict formation of cuspidial shapes from thermocapillary (shear) forces which orient parallel to themoving
interface. An additional challenging feature of the thermocapillary problem is that the apical region exhibits
multiscale dynamics which considerably complicates the stability analysis.

Aside from such fundamental considerations, there is a practicalmotivation for this study aswell.We are
interested in exploring thermocapillary based techniques for patterning nanoscale filmswhich can be rapidly
solidified in situ. The system geometry examined in this work offers a potentially novel lithographicmethod
for one-step non-contact fabrication of cuspidalmicroarrays. This development can facilitate design and
manufacture of specialtymicroarrays such as biomimetic cuspidal substrates. Two recent important examples of
such desirable substrates include infrared (IR) antireflectivemoth eye surfaces patternedwith quintic cusps for
eliminating Fresnel reflections in themid-IR [26–28] as infigure 2(a), and superhydrophobic, self-cleaning
antimicrobial surfacesmimicking the surface of a cicadawing [29] as infigure 2(b). Such substrates can likely be
architected using thermocapillary forces to pattern thinfilms inwhich form follows function i.e. imprinted
cuspidal shapes relating directly to their intended function.

Our group has previously demonstrated experimentally how large patterned thermocapillary forces can be
used to sculpt nanofilms into liquidmicrolens arrays, which are then solidified rapidly in situ [30]. The resulting

Figure 1. Liquid (a) line type and (b)point type cusp formation in a thin film subject to a negative disjoining pressure fromvan der
Waals forces that promote dewetting of thefilm from the bottom substrate. Reprinted from [43], Copyright (2000), with permission
fromElsevier. Liquid (c) line type and (d)point type conical cusp formation caused by thermocapillary forces which drawfluid away
from the lowerwarm substrate toward the top colder substrate, as described in the text.

Figure 2.Cuspidal arrays. (a) SEMmicrograph of plasma etched substrate for super antireflective coatings. Republishedwith
permission of the Royal Society of Chemistry, from [32]; permission conveyed throughCopyright ClearanceCenter, Inc. (b)AFM
image of cicadawing. Reproduced from [41]with permission fromPNAS.
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ultrasmooth surfaces are ideally suited tomicro-optical applications such as beam shaping. The analysis
presented in this work suggests that if themicrolens configurations are allowed to evolve further in time before
solidification is imposed, the systemwill transition to amicrocuspidal array. The local analysis presented in this
work indicates how initial protrusions of any sort, whether triggered by the linear instability [31, 32] or triggered
by large amplitude perturbations [30, 33], are expected to evolve into individual or array-like cuspidal patterns.

The outline of this work is as follows. In section 2we present the evolution equation for an ultrathin
Newtonian liquid layer subject to very large thermocapillary forces induced by thermal conduction across a
slender quiescent gasfilm.Nominal estimates [32] extracted from experiment for the spanwise temperature
gradient across the gas/liquid bilayer reveal values in the range 105–108 °C cm–1. This slender geometry is
known to give rise to an initial linear instability [31, 32]which generates spontaneous periodic arrays of slender
domes. The array pitch, given by thewavelength characterizing the fastest growingmode is subsequently used to
rescale the original equation. Further rescaling to parameter-free dimensionless form yields an equation
belonging to the general class of gradient flows. In section 3, it is shown that this evolution equation does not
support stable stationary states because the dynamics incurred by the confined geometry involve runaway
thermocapillary forces whereby the nanofilm can reduce its free energy by advancing ever closer to the top colder
substrate. In section 4, 2D and 3Dnumerical solutions of the nonlinear interface equation reveal formation of a
stable cuspidal shapewhich terminates in a conewith a rounded tip that undergoes continuous sharpening. The
numerical simulations reveal the self-similar process underlying the power law growth behavior characterizing
the tip speed and tip curvature. In section 5we present an asymptotic analysis of the conical regionwhich reveals
the presence of a stable fundamentalmode acting as an attractor state. Variousmeasures characterizing this
fundamentalmode are shown to be in excellent quantitative agreement with the numerical simulations. The
asymptotic analysis also provides an analytic relation for the slope of the conical tipwhich should prove useful in
designing arrays with specific tip textures. In section 6, we concludewith some final thoughts on how these
findingsmay help advance a novel lithographicmethod for fabrication of specialty cuspidalmicroarrays.

2. Longwavelengthmodel for growth of protrusions by runaway thermocapillary forces

A theoreticalmodel has previously been derived [31, 32] to describe the evolution and stability of a confined
slender gas layer overlaying a nanoscalemolten film as sketched infigure 3. Themolten nanofilm of initial
uniformor average thickness ho is confined to a very narrow gapwidth do by two inpenetrable solid substrates
maintained at a uniform temperature difference T T T 0hot coldD = - > . The nanofilm is assumed to comprise
a single-component, non-volatile, incompressible liquid. Themodel is based on a longwavelength
approximation (also called the lubrication or slender gap limit) for which the thickness of themoltenfilm is
much smaller than any characteristic lateral scale L such that h L d L 1o o

2 2 2 = < ( ) ( ) , inertial forces are
negligible such that Re 1  where Re is the Reynolds number, and thermal conduction is the dominantmode
of heat transfer such that RePr 1  wherePr is the Prandtl number. Estimates [32] based on experimental
values have shown that hydrostatic forces aremuch smaller than viscous forces by at least order 10−7 (quantified
by the ratio of Bond number to capillary number) and therefore gravitational effects are also negligible. The
viscosity of thefilm Thotm m= ( ) is also assumed relatively constant given the ultrasmall gap dimension do. The
model also disallows any contact with the bottomor top substrate such that h t dx0 , o< <( ) where x yx ,= ( ).
Since for single componentfluids the variation in surface tension γwith temperatureT given by dγ/dT is a
negative quantity, anyfluctuation giving rise to a local protrusion generates a local segment of the interface with

Figure 3. Sketch of a linearly unstable thinmoltenfilm overlay by a gas layer. The gas/liquid bilayer is subject to a very large vertical
temperature gradient enforced by the uniform temperature difference T T Thot coldD = - maintained across the very small gapwidth
do, typically less than a couplemicrons. Nominal vertical temperature gradients, T doD , are estimated [32] to be extremely large and
range from about 10 105 8- °C cm–1. As discussed in the text, the governing interface contains a virtual singularity designated by the
dashed line at h t dx, 1o k= -( ) ( )where 1k < . This singularity is never accessible to the evolving film because it lies beyond the
top cold substrate situated at z do= .
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relatively cooler surface temperature and therefore higher surface tension. Such variations in surface
temperature generate thermocapillary stresses T Td dg g =  ( ) , which act to pull liquid fromwarmer to
cooler regions of thefilm.Within the longwavelength approximation, the operator denoting the surface
gradient simply reduces to (∂/∂x,∂/∂y). The dominant shear stresses caused by thermocapillarity are therefore
oriented in-plane and give rise to large lateral fluxes that push liquid into protruding regions of the film, which
grow further in height and become cooler in temperature, thereby establishing a feedbackmechanism.

In the longwavelength limit, the corresponding energy equation describing heat transfer across the gas/
liquid bilayer reduces simply to the 1DLaplace equation T zd d 02 2 = which is easily solved to give the
temperature distribution along the liquid interface z h tx,= ( ):

T h t T T
d h t

d h t
x

x

x
,

,

1 ,
. 1o

o
cold

k
= + D

-
+ -

[ ( )] ( )
( ) ( )

( )

Thematerial parameterκ denotes the ratio of gas to liquid thermal conductivity evaluated at the temperatures of
the respective adjacent substrates. Since the gas layer is alwaysmore thermally insulating than the liquid layer,
the ratioκ is restricted to the range 0<κ<1.Depending on thematerials of choice, however, themagnitude
ofκ can range anywhere fromabout 1/4 or higher formolten polymer films overlay by an airfilm [32] to 10−4 or
smaller for liquidmetalfilms [34] overlay by a xenon gas layer [35]. The confined geometry therefore generates
self-reinforcing runaway thermocapillary stresses, which promote growth of elongations toward the colder
substrate. This process ismitigated only by capillary forces which tend to suppress regions of high curvature. The
systemdescribed is known to undergo a linear instability [31, 32]which occurs irrespective of themagnitude of
ΔT. At early times, infinitesimal disturbances generate periodic undulations infilm thickness which undergo
exponential growth. Thewavelength of the fastest growingmode is given by

h
h

d T

d

h
2

4

3
1 , 2o

o o

o T

o

o
max

1 2

l p
g

k g
k=

D
+ -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

where To hotg g= ( ) and Td dT Thot
g g= ∣ ∣/ . All else equal, a larger difference in temperatureΔT causes

undulations of smaller wavelength. Recent [36–38] and ongoing experiments to confirm themechanism leading
to instability so far indicate good agreement with predictions for the fastest growingmode and its growth rate. In
what follows,λmax is selected as the characteristic lateral scale L used to non-dimensionalize lateral scales in the
governing equation ofmotion.

The dimensionless evolution equation describing the longwavelength thermocapillarymodel is given by

H H

Ca
H

DMaH

D H
H

3 2 1
0. 3

3
2

2

2t
k

k
¶
¶

+   +
+ -

 =
     


 

   

⎧⎨⎩
⎫⎬⎭ˆ

·
[ ( ) ]

( )

Here X x maxl= / , H h t hx, o= ( )/ , D d ho o= / and u tc maxt l=ˆ where uc is the characteristic fluid speed
based on in-plane thermocapillary flow [32]. The evolution of the liquid nanofilm is therefore controlled by two
dimensionless numbers, namely amodifiedCapillary number Ca uc o

3m g= / and amodifiedMarangoni
number Ma T uT cg m= D / . These numbers differ from their usual definitions by factors of the small
parameter ho max l= intrinsic to the longwavelength approximation. (This parameter should not be
confusedwith the small parameter ε pertaining to temporal behavior introduced in section 5.)

As evident, equation (3) exhibits a virtual singularity at H D 1s k= - ( )/ (or h d 1o k= -( ) in
dimensional variables). This singularity lies outside the physical domain beyond the top cold substrate since
κ<1. For purposes of this current study, it proves convenient to recast equation (3) into parameter-free form
such that

H
H H

H

H
H

1
0 43 2

2

2t
¶
¶

+   +
-

 =   
⎡
⎣⎢

⎤
⎦⎥·

( )
( )

where H H Hs=  , XX X c=  , Xc =  and ct t t= ˆ . The reduced scalings are given by Xc =
D H Ma Ca2 3s

1 2k( )/ and D H Ma Ca4 3c s
2 2 2t k=  ( )/ . In this final form, the top cold substrate is located at

H=1−κwhile the virtual singularity occurs atH=1. In this work, we establish that the conical tip at the
apex of the evolving cuspidal shape undergoes self-similar sharpening characterized by distinct power law
exponents. Extraction of robust exponents, however, requires growth over several decades in time.We
therefore focus on systems parametrized by κ; 2×10−4 in order to allow longer evolution times.

3. Stability considerations by analogy to gradientflows

In previouswork [31, 32], we presented the linear stability analysis of equation (3)which exclusively focused on
early time behavior of infinitesimal fluctuations in interfacial temperature orfilm thickness. That analysis
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showed that the instability is of Type II [39]where allmodal fluctuations of wavelength 2maxl l> / are
linearly unstable irrespective of themagnitudeΔT. Eliciting the stability characteristics of stationary states of the
full nonlinear equation given by equation (4) requires a different approach based on the system free energy

H[ ]F . By exploiting an analogy to general gradient flows, we shownext that equation (4)does not admit any
stable stationary states on periodic or infinite (lateral) domains so long asH>0.

Mitlin [40] has previously shown that the interface equation describing thinfilmdewetting by van derWaals
forces, the process depicted infigures 1(a) and (b), can be rewritten inCahn–Hilliard formdescribed by

H M H H , 5t d d¶ ¶ =   · [ ( ) ( )] ( )F

knownmore generally as gradient flow form [41]. The thermocapillarymodel described by equation (4) can also
bewritten in this formwhere the free energy functional is given by

H p H U H p H V,
1

2
d d , 62ò ò=  + W - W -

W W
⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠[ ] ∣ ∣ ( ) ( )F

withmobility coefficientM(H)=H3, potential functionU H H H Hln 1= -( ) [( ) ] and Hd d =F/
H U Hd d2- + / . The curves infigure 4 show thatU(H) has no globalminimum (and thatU(H), U Hd d and

U Hd d4 4 all diverge at the virtual singularityH=1). The energy of the thinfilm systemdepends, of course, on
the total liquid volumeV assumed here to be a conserved quantity. The constraint that the total volume
V H dò= W

W
remain constant is enforced through the Lagrangemultiplier constant p. As shown in

appendix A, d d 0tF for any lateral periodic domainΩ. The proof for a lateral infinite domain simply
requires that the integrand in equation (6) be augmented by the termU H X , t¥[ ( )], but otherwise proceeds
similarly.

We consider stationary solutions H represented by the extrema of equation (6)which satisfy
H p H p, ; , 0d d d =[ ]F for infinitesimal variations δH and δp. This yields the value of the Lagrangemultiplier

p H
U

H

d

d
, 7

H H

2= - +
=

⎜ ⎟⎛
⎝

⎞
⎠ ( )

which defines the surface pressure required formaintaining stationary states of constant volumeV. It has
previously been shown that for a general class of thinfilm equations [42]which include the formof equation (4),
small perturbations to periodic stationary states (i.e. H H X2 2d µ ¶ ¶ ) lead to negative values of the second
variation

H p H p H
U

H
H, ; ,

d

d
d 0 8

H

2 2
2

2
2òd d d d d=  + W <

W
[ ] ∣ ∣ ( )F

whenever the potential function satisfies the relation U Hd d 0H H
4 4 <Î∣/ . This negative value indicates that

there are always nearby states with same periodicity as H but of lower free energy. The proof of this is outlined in
appendix B. Since for the thermocapillarymodel the curve U Hd d4 4 infigure 4 is always negative, equation (4)
cannot therefore support any stable stationary periodic states. This analysis is quite general and can be applied to
many other thin film systems (even volume non-conserving systems) so long as the governing interface equation
can be cast into the formof equation (5).

Figure 4.Plots ofU(H), U H0.2 d d´ and U H0.005 d d4 4´ for the thermocapillary equation.Magnitudes have been rescaled to
accommodate all curves on a common scale.
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4.Numerical solution of nonlinear thermocapillary equation

Togain further insight into the behavior of equation (4) for growth in thenonlinear regime,we examinedetails of the
dynamical shapes obtained fromnumerical solutions for rectilinear H X , t[ ( )]and cylindrical H R, t[ ( )]geometry.
By virtueof the fact that vertical dimensions cannot exceed the substrate separationdistance and that lateral
dimensions continue to scalewith thedominantwavelengthof the initial instability, the results belowrigorously
satisfy the lubrication approximation throughout the cuspidal formationprocess. (This is in contrastwithother thin
filmproblemswhich involve asymptoticmatching to regions describedby a Stokesflow [43].)AmixedLagrange
finite elementmethod [44]wasused to evolve the solutions, subject to no-flux conditions at theboundaries of the
lateral domain [0,λmax/2] and initial conditionH(X,τ=0)=1/3×[1+0.1cos(2πX/λmax)] (withX replacedby
R for cylindrical geometry). The restriction to adomain sizeλmax/2 ensured that thedynamics of an individual
cuspidal shape couldbe examinedwithhigh resolutionwithout interference fromsimilar adjacent shapes arising
from thenative linear instability discussed in section2.Quadratic elements numbering about 20,000 andof
minimumsize 4×10−8 ensured sufficient spatial resolutionof the emerging cuspidal region.Themesh sizeswere
everywheremuch smaller than H2 1 -

∣ ∣ at all times. Integration in time relied on a secondorderbackwarddifference
schemewith small adaptive time stepping.Typically, full evolution toward the asymptotic shapes required about
11 000 integration steps. Simulationswere terminatedwhen the (dimensionless)distancebetween the virtual
singularity atH=1 and the liquid cusp apex H H 0,apex t t=( ) ( ) reached a value of about 10−4.

Shown infigure 5 are farfield (a) andmagnified views (b) of an evolving cusp capped by a conical tip. As
expected from consideration of volume accumulation, the rectilinear geometry leads to a slightly thinner cusp
for the same time interval. Inspection of the shape of the fluid tip reveals a conical protrusionwith constant slope
whose tip radius decreases rapidly in time. Plotted infigure 5(c) are the tip speed H apext¶ ¶ ∣ andmagnitude of

the tip curvature H2
apex∣ ∣ as a function of the decreasing distance H1 apex t- ( ). The power law behavior

observed persists for almost four decades in time indicating robust self-similar growth. The indicated asymptotic
values for the slope and intercept values (inparentheses)of the lines shownwereobtained from least squaresfits over
the shaded (yellow)portion shown.This self-similar behavior confirms the relations H H1apex apex

3t¶ ¶ ~ - -( )/

and H H12
apex apex

1 ~ - -
( ) ( ) . Introducing the singular time τswhereHapex=1—the singular point of

equation (4)—yields the scaling relations governing the conical tip region, namely H1 sapex t t- - ~( ) ( )/

H1 apex
3- -( ) and H X H1 1apex

2
apex

1- ~ - -( ) ( )/ . These reveal the self-similar variables characterizing this

asymptotic regime, namely X H1 sapex
1 4t t~ - ~ -( ) , which reflect the lackof an intrinsic spatial or temporal

scale in the conical region.As evident infigure 5(d), the shapeof the conical tipundergoes collapse onto a common
curvewhenboth the vertical and lateral dimensions arenormalizedby the factor H1 apex-( ). The extent of the
collapsed region is observed to increase in time. Shown in the inset offigure 5(d) is the rescaled apical curvature

H H1 apex
2

apex- ( )( ) versus X R H, 1 apexh = -( ) ( ), which also exhibits self-similar collapse. The virtual
singularityHapex=1 appears therefore to act as an attractor state for formationof the conical tip.

The top panel shown infigure 6 represents 3D views of an evolving cuspwith a conical tip at for the four
times designated, as obtained from finite element simulation of the full nonlinear equation (4). The
accompanying supplementarymaterial available online at stacks.iop.org/NJP/21/013018/mmedia contains
additional information about the simulation including a video clip of the process. The bottompanel displays the
value of the curvature of the gas/liquid interface at every point within the computational domain. The orange
curves delineate concave from convex regions. The last image in the bottompanel clearly reveals that the
interface evolves into a cuspidal shape capped by a conical tip with shrinking radius flanked by a broader convex
surface.

We verified that these results converged uponmesh refinement and that theminimummesh size chosenwas
sufficient to capture the dynamics of the evolving tipwith high resolution. In particular, the scaling relations
noted above establish constraints on theminimummesh size X H H1 1apex

2
apexd ~ - ~ ( )/ required to

resolve the curvature in the apical region. For the results shown infigure 5, the simulationswere terminated
when H O1 10apex

4- ~ -( ). Theminimumelement size used of 4×10−8 ensured that X O 10 8d ~ - ( )
H1 apex- .We also estimated the error in the curvature term H2

apex( ) as follows. For rectilinear geometry for
example, thefinite element discretization of the Laplacian is analogous to the expression for the centralfinite
difference technique. Letting D 2

 denote thefinite difference approximation to the Laplacian, the local
truncation error is therefore given by

D H H O X H, . 92 2 2 2 2d=  +     ( ) ( )

From the scaling relation above, the error H2 2
apex  ( ) is expected to be O H O1 10apex

3 12- ~-(( ) ) ( ) and since
X O 10 8d ~ -( ), the error O X O 102 16d ~ -( ) ( ). Therefore, the overall local error in H O 102

apex
4 ~ -

( ) ( )was
sufficiently small in our simulations to capture with high resolution the self-similar dynamics in the apical region
before the simulationswere terminated to prevent contact with the top colder substrate.
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5. Asymptotic analysis of self-similar cusp formation

The exponents obtained from these numerical simulationswere also confirmed by analysis of equation (4) by
considering a Taylor expansion about the virtual singular pointH=1, which yields the asymptotic evolution
equation

Figure 5. Self-similar formation of conical cusp fromnumerical solution of equation (4) for rectilinear (X) and axisymmetric (R)
geometry. Arrows indicate increasing time τ. (a) Far field view of cuspidal formation for H 0.367, 0.4, 0.5, 0.6, 0.7, 0.8,apex t =( )
0.9, 0.987 5. (b)Magnified viewof conical tip for H 1 0.2 2n

apex t = -( ) / showing n=0 (), n=1 (̈ ), n=2 (), n=3 (●) and
n=4 (,). Inset:Magnified view of conical tip for H 1 0.2 2n

apex t = -( ) / showing n 5 10= - (). (The last two curves n 9, 10=
are indistinguishable.) (c)Power law behavior of H apext¶ ¶ ∣/ and H2

apex∣ ∣ versus H1 apex t- ( ). Slopes and intercept values
(in parentheses)were obtained from least squaresfits over the shaded (yellow) region. (d)Rescaled solutions H H1 1 apex- -( ) ( )/
showing self-similar collapse of the conical tip for H 1 0.2 2n

apex t = -( ) / where n 0 10= - . Inset: Rescaled apex curvature
H H1 apex

2
apex- ( )( ) versus η.
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Balancing the first and second termwith the second and third term yields the same asymptotic relation obtained
previously, namely X H1 sapex

1 4t t~ - ~ -( ) . These scalings suggest introduction of the stretched variables
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H wor and 1 where . 11
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Wenote here that if equation (4)were truly scale invariant, and not just asymptotically so as H 1apex  , the
expansion in equation (11)would terminate at n=1. The appearance of the H1 - term in the denominator of
equation (4), however, precludes such global scaling and instead leads tomultiscale expansions of the form:

H
w w
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⎤
⎦⎥·
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where the symbols , · and 2 represent the appropriate forms of the gradient, divergence and Laplacian
operators for rectilinear (X) or cylindrical (R) geometry. To leading order n=1, equation (10) then reduces to
the nonlinear, fourth order equation given by

w w w 0, 151 1 1 1 1 1  + + =( ) ( ) ( ) ( )
where the operators 1 , 1 and 1 are defined as

w w
w1

4

d

d
, 161 1 1

1 h
h

= -
⎛
⎝⎜

⎞
⎠⎟( ) ( )

w w , 171 1
2 2

1 = - h h( ) ( )

w
w

1
. 181 1

2

1

 = h
⎛
⎝⎜

⎞
⎠⎟( ) ( )

Here and inwhat follows, operator subscripts denote differentiationwith respect to the self similar variable η for
rectilinear or cylindrical form. Required symmetry about the axis of origin yields two boundary conditions,
namely wd d 01 0h =h=( ) and wd d 03

1
3

0h =h=( )/ . An additional boundary condition is obtained from the
requirement that equation (12) remain bounded as 0e  , or equivalently as h  ¥, which requires that the
leading term 1 vanish. This then leads to theRobin condition w 01 1 =h¥( )∣ . To leading order then, the
asymptotic solution to equation (15) is satisfied by the Laurent series

Figure 6. Four images of thefilm thickness H X, t( ) (top panel) and interface curvature H2 (bottompanel) fromnumerical
simulation of equation (4) on a square periodic domainwith edge length 3.02maxl » . The initial conditionwas H X, 0 =( )

X Y R X1 0.05 cos 2 cos 2 6max maxp l p l- + +{ [ ( ) ( )] ( )}/ , where R X( ) denotes a uniformly distributed randomvariable between
-0.2 and 0.2. Themaximum film thickness is denoted Hmax . The evolution times depicted are 0.0, 30.0, 50.5 and 50.845 527 22t = .
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5 4
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Convergence to w1
¥ canbeobtainedby linearizing equation (15) about the solution w w1 1h h ¥ = +¥( ) ( )

f h( )whichyields thenon-homogeneous linear equation

f f f w 0. 201 1
2

1
2 + -  =h

¥( ) ( ) ( ( ) ) ( )

In the limit a 11 ∣ ∣ , this equation leads to a singular perturbation problemwhose inner region is influenced by
the fourth order capillary term (not shown). Herewe only focus on the global outer region solutions of the
linearized equation obtained byWKBJ analysis where f Sexp n

n
n

4 3
0

4 3sh s s sh= å-
=

¥( ) [ ( )] forσ=1.
Matching terms of orderσ−4/3 andσ0 and solving for the resulting two ordinary equations yields the formof the
general solution

f exp
3

4
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4 3
2 3 4 3åb h
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a

p

=

⎡
⎣⎢

⎤
⎦⎥ ( )

whereα=1 for rectilinear andα=5/3 for axisymmetric geometry. To preclude the first two terms in the
summation fromundergoing divergent oscillatory behavior, it is required thatβ1=β2=0. The two remaining
non-vanishing terms proportional toβ0 andβ3 simply reflect an infinitesimal shift in the farfield slope and a
rapidly decaying function, respectively.Were the analytic solution to equation (15) knownwithin the apical
region, then the coefficientsβ0 andβ3 could be obtained by asymptoticmatching. Absent that information, the
solutions to equation (15) are still constrained by the symmetry requirement about at the origin. This imposes
the restriction that solutions can only be found for special values of the far field slope, as discussed next.

The numerical solutions to equation (15)were computed on afinite domain sufficiently long to preclude
finite size effects; the results shown also converged uponmesh refinement. Shown infigure 7 are the first six
similarity solutionswith corresponding numerical values listed in table 1. The asymptotic interface slopes of the
conical tip for axisymmetric geometry are always smaller than the slopes for rectilinear geometry, as expected.
The axisymmetric solutions also displayweaker oscillatory behavior, likely due to suppression by the capillary
pressure associatedwith the additional term in the interface curvature. The fundamentalmode p=1 exhibits
no oscillatory behavior unlike the higher order solutions p�2.

Next we compare the fitting coefficients from the asymptotic self-similar analysis of equation (15)with those
obtained fromdirect numerical simulations of equation (4), which are plotted infigure 5. To leading order

Figure 7. Leading order self-similar solutions w p
1
( ) of equation (15). Only the first six convergent solutions are shown.

Table 1.Asymptotic values of the interface slope, apex height and apex
curvature for the leading order solutionw1 to equation (15). Numbers in
blue and red denote values for rectilinear and axisymmetric geometry,
respectively.

p wlim d dp
1 hh¥
( )/ w 0p

1 ( )( ) w 0p2
1h ( )( )

1 1.0437 0.7639 0.5526 0.5372 1.2082 1.5563

2 0.3430 0.2474 0.6728 0.7317 −0.2316 −0.1624

3 0.2145 0.1610 0.4204 0.4816 0.2021 −0.1669

4 0.1580 0.1196 0.4052 0.4544 −0.0884 −0.0438

5 0.1257 0.0962 0.3390 0.3902 0.0792 0.0526

6 0.1046 0.0806 0.3211 0.3649 −0.0364 −0.0087
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H w1 0p
apex 1e- » ( )( ) , it can be shown that the intercept value for H apext¶ ¶( ) is approximately

w4 log 0 log 4p
10 1 10-[ ( )]( ) and for H2

apex( ) approximately w wlog 0 0p p
10 1

2
1[ ( ) ( )]( ) ( ) . Substitution of the values

for p=1 from table 1 into these expressions yields intercept values for H apext¶ ¶( ) equal to−1.632

(rectilinear) and−1.681 (axisymmetric). Likewise, the intercept values for H2
apex( ) equal−0.175 (rectilinear)

and−0.078 (axisymmetric). These predicted values are in excellent agreementwith the numerical intercept
values (shown in parentheses) infigure 5(c). Additionally, the asymptotic values of the interface slope

wlim d d1
1 hh¥

( )/ given in table 1 show excellent agreementwhen superposed on the profiles infigure 5(d).The
asymptotic values are predicted to be 1.043 7 (rectilinear) and 0.763 9 (axisymmetric), while the numerical
results yielded 1.044 and 0.764. Converting back to dimensional form, the value of conical tip slope is given by
the relation

T wConical tip slope 3 2 1 lim d d . 22T o
1 2 1 2

1
1g g k k h= D - ´

h¥
( ) [ ( )] ( )( )

In section 4, it was shown that the numerical solution to the full nonlinear equation given by equation (4)
asymptotes to a fluid elongation resembling a cuspidal shape capped by a conical tip. The asymptotic analysis
in this section reveals that the numerical solution for this shape corresponds identically to the fundamental
solution w1

1( ). A general proof of why the numerical solution always converges to this fundamental solution

and not other solutions w p
1

2( ) is beyond the scope of this work. Further examination of this finding by
implementing a conventional linear stability analysis of equation (10) is a non-trivial exercise because of the
multiscale nature of the self-similar base state solutions, which evolve onmultiple time scales n

n 1e =
¥{ } . However,

since both the numerical and analytic solutions suggest that the late stage dynamics of equation (11) is
dominated by the term w p

1
( ), it suffices then to consider infinitesimal perturbations described by

H w1 e , 23p

m

m
m
p

1
1 4

0

iåe h e f h- = + l q-

=

¥

( ) ( ) ( )( ) ( )

where 1m
pf h ∣ ( )∣( ) denotes an infinitesimalmodal perturbation to w p

1 h( )( ) , θ is the polar angle in cylindrical
coordinates, and ε is defined in equation (11). The resulting eigenvalue problem is given by

, 24m
p

m
p

m
p

m
p

m
p

1 1 1  f f d f l f+ + =[ ] [ ] ([ ] ( )( ) ( ) ( ) ( ) ( )

where wm
p

m
p p

1 ,
2

1
2d f f= - h q[ ] [ ( ) ]( )

( )
( ) ( )/ andwhere ,

2 h q( ) denotes theLaplacianwith regard toη and the
angular coordinate θ. (Thedifferential operators in equation (15)must also be expanded to include the the angular
dependenceon θ.) Inorder for localized perturbations in the farfield to preserve constant slope, it is required that

0m
p

m
p

m
p

1 f l f- [ ]( ) ( ) ( ) as h  ¥. Here, positive eigenvalues m
pl( ) reflect perturbations m

pf( ) with algebraic

growth s
1 4t t- l-( ) , which is faster than the growth s

1 4t t-( ) of the corresponding base state solutions w p
1
( ).

Wealso note that since equation (10) is both space and time translationally invariant, then for each value ofp there
must exist two eigenvalues reflecting these symmetries, namely the eigenfunction wcos d dp

1q h´ ( )/ with
eigenvalue 1/4 and the eigenfunction w wd d 4p p

1 1h h-( )( ) ( )/ / with eigenvalue 1, respectively.
Plotted infigure 8 is the eigenvalue spectrum m

pl( ) for infinitesimalmodal perturbations m
pf( ) for thefirst six

self-similar base state solutions w p
1
( ) where p=1−6. Each solution contains p2 eigenvalues. Irrespective of the

geometry, the fundamental solution w1
1( ) is the only solutionwith no positive eigenvalues aside from1/4 and 1.

The solution w1
1( ) is therefore the only solution that is linearly stable to perturbations. The remaining positive

eigenvalues increase inmagnitudewith increasing p, indicatingmore rapid growth and instability associated
with the coefficient 1 4e l- multiplying the last term in equation (23). The numerical simulations described in
section 4 and plotted infigures 5 and 6were always found to asymptote to the bounded fundamental solution

Figure 8.Eigenvalue spectrum m
pl( ) of equation (24) for perturbations m

pf( ) to the w p
1
( ) (p=1−6) base state solutions of equation (15)

for rectilinear (m = 0), axisymmetric (m = 0) and dipolar (m = 1) disturbances.
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w1
1( ). Similar strong convergence to the stable fundamental solution has previously been reported for the thin

film equation describing van derWaals rupture [45] (shown infigure 1). In that example, initialization of the
thinfilm equation by the corresponding solution w p

1
2( ) for that problem leads to a different global liquidfilm

configuration—however, the local behavior in the vicinity of the line or point rupture converges to the
fundamentalmode w1

1( ). A full investigation of the local scaling behavior leading to self-similar cuspidal
formation in the thermocapillary system for initial conditions resembling higher order eigenmodes is left for
further study. It is anticipated that irrespective of the initial condition, simulation of the full nonlinear evolution
equation given by equation (4)will still yield film shapes dominated by w1

1( ) in the region of the conical tip since
w1

1( ) is found to be linearly stable.

6. Conclusion

The analysis and simulations presented in this work reveal how surface shear forces due to runaway
thermocapillary stresses generate fluid protrusions resembling cuspidal shapes capped by a conical tip. This
finding expands the category of hydrodynamicflows known to form stable cuspidal shapes to include thin film
systems subject to interfacial shear, where the driving force is oriented parallel to themoving interface. The
asymptotic analysis reveals how the conical tip undergoes self-focusing toward a virtual attractor state
characterized by a line (rectilinear case) or point (axisymmetric case) singularity via a robust self-similar process.
The asymptotic derivation also yields an analytic relation for the slope of the conical tip which should prove
useful to experimentalists whowish to designmicroarrays with specified tip slopes for beam shaping,
antireflective coatings or other textured substrates.

The original systemdescribed, based on a thin uniformmolten film confined by parallel solid boundaries
maintained at different uniform temperature, is known to support a linear instability that forms arrays of
rounded protrusions resemblingmicrolenses. These protrusions are expected to evolve into arrays of cuspidal
shapeswith conical tips by the nonlinear dynamical process described since the thermal gradient across the gas
layer just above the fluid tip progressively increases in time, leading to a runaway process.We anticipate that any
initialfilm configuration that contains localmaxima infilm thickness, whether or not periodically arranged and
however initially seeded, will also trigger cusp formation at such locations given the local, self-similar nature of
the underlying growth process.We also anticipate that evaporative effects [46] in nanofilms containing volatile
components which require that the temperature of thewarmer substrate exceed the vapor saturation
temperature, an effect not considered in this work,may preclude self-similarity in the apical region.

We have previously shown [30, 36–38] that the evolution process leading to rounded lensletmicroarrays can
be terminated on demand and the liquid shapes affixed in place by dropping the temperature of both substrates
below the solidification point. Rapid solidification of these liquid structures ismade possible by two
advantageous features: the large surface to volume ratios intrinsic tomicroscale or nanoscale filmswhich
facilitates rapid cooling, and digital control over the temperature of the confining substrates.We fully expect that
similar rapid solidification can be achieved once the desired conical protrusions have formed in order to solidify
and affix their shape on demand. Perhaps alternativemethods offlow control by lasermanipulation, previously
applied to thin film thermocapillary spreading along a solid substrate, can also be used [47]. In summary, we
hope the theoretical analysis provided here helps guide development of a novel lithographicmethod for direct,
non-contact fabrication of cuspidalmicroarrays, whose shapes would bemore difficult, costly or even
impossible to fabricate by othermeans.

AppendixA. Proof of relation d H[ ]F /dτ�0

Weevaluate the quantity Hd dt[ ]F for the free energy H[ ]F defined in equation (6) by applying Leibnitz’s rule
for differentiation over afixed periodic domainΩ:

H
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d
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Interchanging the order of operators  and t¶ ¶ and applyingGreen’sfirst identity to the first integral in
equation (A.2) gives

H
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where continuity ofH and higher order derivatives ensures that the boundary termproportional to H
vanishes identically. Substitution of the term H t¶ ¶ in equation (A.3) by the relations given in equation (5) and
equation (6) yields

H
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H
M H H
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d

d

d

d

d

d
d , A.42 2òt
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⎞
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⎫⎬⎭
[ ] · ( ) ( )F

where M H H3=( ) . Application of Green’sfirst identity subject to the vanishing boundary term yields the
desired inequality
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Appendix B. Proof of relation H p H p 0, ; ,2d d d <[ ]F

Weconsider the free energy associatedwith a small deviation about a stationary solution H of equation (6) for
arbitrary perturbation Hd :

H H H H p H p H p H p O H, ; ,
1

2
, ; , . B.12 3d d d d d d d d+ = + + +[ ] [ ] [ ] [ ] ( ) ( )F F F F

By definition, the first variation of the energy H p H p, ; ,d d d[ ]F must vanish identically for any such stationary
solution H . Here, the second variation is given by the integral quantity

H p H p H
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H
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subject to the constraint of constant volumeV such that

H H Vd , B.3ò d+ W =
W

( ) ( )

which requires therefore that H d 0ò d W =
W

. This in turn indicates that the integrated value of the last term in

equation (B.2) reduces to zero. Application ofGreen’sfirst identify reduced the second variation 2d F to the form
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where the additional boundary integral vanishes identically for any periodic perturbation Hd .
It is now a straightforward exercise to show that there always exist admissible arbitrary perturbations Hd

such that H p H p, ; ,2d d d[ ]F is always strictly negative.We recall from equation (7) that the interfacial pressure
p (i.e. Lagrangemultiplier) corresponding to a stationary state H of volumeV is given by
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Differentiating equation (B.5) twice with respect toX yields the relation
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Substituting equations (B.6) into (B.4) for perturbations of the form H H X2 2d = ¶ ¶ with vanishing total
volume yields
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All boundary terms from integrations by parts vanish due to periodic boundary conditions. For the
thermocapillarymodel described by equation (6), the potential functionU H H H Hln 1= -( ) [( ) ] for
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H 0, 1Î ( ) and therefore
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H H
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When substituted into equation (B.10), this yields the relation H p H p, ; , 02d d d <[ ]F . This inequality assures
that for every nonuniform stationary state H such that H X¶ ¶ is not everywhere zero, there always exists a
neighboring state H Hd+ of lower free energy.
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