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The newest generation of integrated chips for machine learning and artificial intelligence generate
enormous power densities, so much so that the extraction of waste heat is now considered the limiting
factor in information processing. Although liquid cooled microfluidic networks have been effective
in preventing thermal runaway damage, the extracted thermal flux is still limited by the intrinsic
thermal slip length at the liquid/solid (L/S) interface, a notoriously difficult quantity to measure at
non-cryogenic temperatures. Non-equilibrium molecular dynamics simulations, which are poised to
offer a solution, have indicated that a higher liquid contact density corresponds to a smaller thermal
slip length due presumably to more frequent L/S collisions. Here we offer a simple but compelling
counterexample which challenges this prevailing view. By extracting various metrics relating to the
motion of liquid particles in the contact layer, we have uncovered two mechanisms acting in concert
which enhance thermal tunneling across the interface despite low contact density. The first requires
strong spatial commensurability between the contact layer and surface potential of the adjacent solid.
This represses diffusion within the contact layer and intensifies localization by 2D caged motion.
Caged particles then tunnel between liquid layers more rapidly thereby shuttling heat toward cooler
regions efficiently. Among other results, a smaller thermal slip length correlates positively with a
larger non-ergodicity parameter but shorter - not longer - caging time. The fundamental nature of
this study suggests a new paradigm for the design of L/S interfaces to maximize thermal transport.

I. BACKGROUND

When modeling thermal transfer at the continuum
level across an interface separating dissimilar material,
it is normally assumed that at all points of contact, the
temperature is equal since the boundary is in a state of
local thermal equilibrium [1]. This assumption hinges on
whether the thermal boundary resistance (TBR) of the
interfacial region is negligible in comparison to that of the
adjoining bulk media. When this is not the case, the TBR
must be incorporated into the analysis. For two materials
in contact subject to a thermal flux Jz (power transfer
per unit surface area along the ẑ axis), whose surface tem-
peratures maintain a thermal jump ∆T = T1 − T2 > 0,
the TBR is defined as

R =
T1 − T2

Jz
, (1)

where for a Fourier conductor

Jz = + k(T )
∣∣∣dT
dz

∣∣∣ . (2)

Here dT/dz is the local thermal gradient and k(T ) the
local thermal conductivity, which can only depend on
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temperature but not higher gradients. At a liquid/solid
(L/S) interface, it is more common to invoke the thermal
slip length LT defined by

LT =
T1 − T2∣∣dT/dz∣∣

liq

, (3)

where |dT/dz|liq is the thermal gradient in the liquid in-
terior away from the interface and in the absence of fluid
flow. The sketch in Fig. 1 illustrates the geometry which
defines LT as the distance within the solid where extrap-
olation of the thermal gradient |dT/dz|liq yields the value
T1. Discovery of this temperature jump dates back to P.
Kapitza, who in 1941 first measured this discontinuity at
an interface separating liquid helium from various metal-
lic solids at cryogenic temperatures [2], thereby introduc-
ing the Kapitza length. At non-cryogenic temperatures,
it has become more common to refer to this quantity as
the thermal slip length, the nomenclature adopted in this
work.

The newest generation of integrated chips for ma-
chine learning and artificial intelligence generate enor-
mous power densities, so much so that the extraction of
waste heat is now considered the limiting factor in in-
formation processing. Without rapid extraction of waste
heat, densely packed chips easily malfunction from hot
spot formation and subsequent thermal runaway. Early
studies of heterogeneous bipolar transistors, for example,
indicated how current or voltage instabilities generate
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FIG. 1. Schematic diagram (not drawn to scale) illustrat-
ing the definition of the thermal slip length LT = (T1 −
T2)/|dT/dz|liq. With this definition, the extent of the interfa-
cial region is intended to be infinitesimally small in compari-
son to the thickness of the adjacent solid and liquid layers.

thermal runaway from rapidly increasing junction tem-
peratures [3]. For this reason, the newest generation of
compact chips designed for power intensive applications
such as data mining and machine learning require single
phase liquid cooling. The switch from gas to liquid cool-
ing [4], which relies on circulation of a coolant through
a network of embedded microfluidic channels has proven
fairly successful in this regard. Even for optimal circula-
tion patterns, however, thermal extraction remains sub-
optimal due to the intrinsic thermal boundary resistance
at the L/S interface, which must be overcome for optimal
performance.

A. Predictions of thermal boundary resistance at
cryogenic temperatures

Researchers long ago developed two main models for
predicting TBR at cryogenic temperatures for systems in
which phonons are the dominant heat carrier. The acous-
tic mismatch model (AMM) assumes specular reflection
of phonons at the interface, somewhat akin to specular re-
flection of electromagnetic waves described by the Fresnel
equations. This idealized model overestimates TBR in
some systems by over two orders of magnitude (e.g. Fig.
1 in Ref.[5]). Interesting, it also predicts a finite value
of TBR for two identical contacting media by virtue of
the fact that the interface introduces a discontinuity [5].
The diffuse mismatch model (DMM), which tends to un-
derestimate TBR, assumes all incident phonons undergo
scattering at the interface. Generally then, the smaller
the acoustic impedance mismatch of the two adjoining
materials or the fewer number of surface defects, the
smaller the degree of phonon scattering and the smaller
the value R (e.g. Fig. 14 in Ref.[5]). Both the AMM
and DMM model suffer from the limitation that the in-
put values to R rely exclusively on material constants

characterizing the adjoining media and therefore don’t in-
corporate consideration of the interfacial bonding energy
or surface defects. Despite these shortcomings, however,
at low temperatures below about 30 K, the predictions
they yield offer reasonable estimates for solid/solid (S/S)
systems when treated to minimize surface defects and
pressed together tightly to minimize voids and asperities
[6]. Closer to room temperature however, where inelastic
phonon scattering and other surface effects play a signifi-
cant role, neither model provides a reliable estimate of R.
Researchers have recently introduced a “phonon model
of thermodynamics”, an equilibrium based concept able
to predict with surprising accuracy over a wide range in
temperature and pressure the specific heat of many liq-
uids ranging from noble and metallic to hydrogen-bonded
fluids [7]. Whether elements of this successful model can
perhaps be extended to non-equilibrium systems main-
taining a thermal gradient remains to be seen.

B. Necessity of non-equilibrium molecular
dynamics simulations

There exist but a few experimental techniques for mea-
suring TBR or LT at interfaces in microscale systems due
to limitations in resolution and restrictions on the ther-
mal penetration depth of the heat source. Although im-
provements are underway to enhance measurement sen-
sitivity of the thermal slip length at S/S [8] and L/S
[9] interfaces, the latter is particularly challenging at
non-cryogenic temperatures. Researchers have therefore
come to rely heavily on particle based simulation meth-
ods for quantifying thermal exchange across the L/S bar-
rier. In particular, non-equilibrium molecular dynamics
(NEMD) simulations are well poised to offer solutions
to this challenge. The intermolecular potential of choice
for a spherically symmetric two-body interaction of sim-
ple neutral particles is the Lennard-Jones (LJ) potential,
which has allowed highly accurate predictions of thermo-
physical values for gaseous, liquid and solid argon. The
LJ potential scales as εU(r/σ), where ε is the inter par-
ticle interaction energy, U is the potential function, r is
the particle separation distance and σ is the approximate
repulsive distance (sometimes called the particle diame-
ter). According to the principle of corresponding states
[10], the thermodynamic, structural and dynamic behav-
ior of many other liquids and solids can also be modeled
by the LJ potential by different choice of ε and σ - hence,
the ubiquitous use of NEMD studies based on the LJ po-
tential [10].
Early NEMD benchmark studies of a bulk homoge-

neous isotropic fluid confined between two unstructured
walls at different temperature confirmed that thermal
conduction within the interior liquid and solid is well
described by Eq. (2) for fluid density, pressure and tem-
perature ranging from gas-liquid coexistence to the freez-
ing [11] point. With this finding established, researchers
began exploring the influence of the L/S interaction en-
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ergy εLS and repulsive distance on the degree of liquid
density stratification near a wall, a layering phenomenon
first detected in equilibrium systems [12–14]. The first
and largest oscillation in the liquid density profile, which
always occurs next to the wall, is known as the contact
layer and its contact density ρc determined by integra-
tion over that extent of that layer. The value ρc should
not be confused with the peak density of the contact
layer, a local value signifying the maximum amplitude of
the first oscillation. As is common, the separation dis-
tance between the peak density of the first solid and liq-
uid layers is known as the depletion layer thickness. Sub-
sequent studies unveiled numerous correlations between
the thermal slip length in L/S systems and parameters
such as the LJ interaction energy [15–20], liquid pressure
[21, 22], wall surface temperature [23, 24], wall rough-
ness [20], wall symmetry [25, 26], liquid thickness [27],
spring constant used in popular wall-spring models [27]
and more. During the last twenty years, NEMD simula-
tions have been extended to the study of structured fluids
including hydrogen bonded liquids and solids describing
metal, dielectric and insulating material.

C. Importance of the contact layer

Somewhat analogous to the transmission and reflection
of light at the boundary separating media of different
refractive index, the L/S interface also plays a signifi-
cant role in regulating the transmission and reflection of
thermal energy. As first reported [18, 28], the stronger
the L/S interaction energy, the smaller the thermal slip
length but the mechanisms responsible for this connec-
tion are not well understood. Studies have since at-
tributed this correspondence to an increase in the density
of adsorptive/absorptive particles in the contact layer
onto the solid surface [29, 30], which some have quantified
by the contact density ρc [22, 31, 32]. Larger values of the
contact density can be had by lowering the system tem-
perature, increasing the liquid pressure or using a denser
bulk fluid. It has also been reported in NEMD simula-
tions of L/S systems consisting of water in contact with
various orientations of solid silicon that a higher thermal
boundary conductance (i.e. lower thermal boundary re-
sistance) correlates closely with a smaller depletion layer
thickness [33], which has been attributed to two possible
effects. The higher the contact density ρc, the denser
the first liquid layer and presumably the more frequent
the collisions with the solid layer. Secondly, the smaller
the depletion layer thickness, the stronger the influence
of the corrugations in the solid surface potential, which
presumably enhances thermal exchange. Motivated by
such findings, NEMD studies have tended to focus on
the amplitude, number and character of density oscilla-
tions representing the degree of liquid layering against a
structured solid. In this work we focus almost exclusively
on stationary and dynamic properties associated with the
planar (2D) motion of particles within the contact layer.

Subscripts c shall refer to particles in the contact layer
and the symbol ∥ to measurements associated with 2D
motion in the plane defined by the L/S interface.

D. Organization of paper

The simulations to be described are based on a simple
monatomic liquid confined between two identical crys-
talline walls oriented along one of three facets and whose
exterior boundaries are maintained at a given tempera-
ture difference. The contact layer temperatures and ther-
mal flux values then vary naturally by different choice of
L/S interaction energy and crystal facet. The computa-
tional details and methods of analysis used to quantify
various stationary and dynamic quantities are detailed in
Section II. In Section III, we first benchmark the system
by showing how crystal facet orientation, L/S interaction
energy and contact layer temperature influence station-
ary properties such as the liquid density profile, liquid
contact density, temperature profiles, thermal flux and
thermal slip length. We then examine features of the 2D
(i.e. in-plane) radial distribution function and 2D static
structure factor describing particle organization through-
out the contact layer. This is followed by examination
of the 2D and 3D velocity autocorrelation function, 2D
mean square displacement and 2D self-intermediate scat-
tering function. The discussion in Section IV focuses on
the main finding that a smaller thermal slip length cor-
relates positively with a larger non-ergodicity parameter
but shorter - not longer - caging time.

II. COMPUTATIONAL DETAILS

All physical quantities reported in this work are scaled
by the reduced units in Table I. The geometry of the
multilayer rectangular cell used in the simulations is il-
lustrated in Fig. 2(a) and its dimensions listed in Table
II.

As shown, the liquid layer was confined between two
unthermostatted solid walls of thickness Lhs = Lcs. The
centerline of the liquid layer was positioned at the coordi-
nate origin z = 0. Each solid layer acting as the thermal
source or sink was placed in contact with a thermostatted
solid of thickness Lsource = Lsink. All simulations were
carried out with thermostat temperatures Tsource = 1.6
and Tsink = 1.0. Migration or sublimation from the out-
ermost boundaries of thickness Lfixed was preventing by
affixing those particle in place.

All pairwise interactions between particle pairs (ij) =
LL, LS or SS were modeled by a truncated and shifted
12-6 LJ potential given by

Uij(r) =

{
U(r)− U(rc) if r ≤ rc ,

0 if r > rc
(4)
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FIG. 2. (a) Layered rectangular computational cell with
thermostat source and sink temperatures Tsource = 1.6 and
Tsink = 1.0. Listed above the cell geometry are the approx-
imate number of FCC unit cell lengths spanning each layer.
(b) Three FCC facet orientations used in this study. Iden-
tical facet orientations were imposed on all solid layers. (c)
Sample distribution P(v) showing liquid particle speed in-
side the hotter and colder contact layer facing an [011] facet
for εLS = 1.0. Superimposed on the data is the Maxwell-
Boltzmann distribution function in Eq. (14) for fit constants
T fit
h = 1.526± 0.001 and T fit

c = 1.0740± 0.0009.

where

U(r) = 4 εij

[(σij

r

)12

−
(σij

r

)6]
, (5)

and r = |r⃗i − r⃗j | denotes the particle separation dis-
tance, εij is the pairwise interaction energy (also called
the bonding strength) and σij is the separation distance
corresponding to U(r = σ) = 0. The potential cutoff
radius was set to rc = 2.5. The truncated and shifted
potential guarantees there are no discontinuities in the
force field and therefore no impulsive effects which could
otherwise influence particle trajectories. Additional key
parameters are listed in Table I. For the range of temper-
ature and density in this study, it was confirmed that the
interior of the fluid layer remained a well defined dense
liquid far from the critical and triple point [36, 37].

To allow propagation of anharmonic modes, all solid

Physical quantity Numerical value

mass m∗ = 6.690× 10−26 kg

length σ∗ = 0.3405× 10−9 m

energy ϵ∗ = 165.3× 10−23 J

temperature T ∗ = ϵ∗/kB = 119.8 ◦K

time t∗ = (m∗σ∗2/ϵ∗)1/2 = 2.14 ps

mass density ρ∗ = m∗/(σ∗)3

pressure p∗ = ϵ∗/(σ∗)3 = 41.7 N/m2

effective particle diameters σ∗
LL = σ∗

LS = σ∗
SS = σ∗

FCC edge length a∗=1.560σ∗=5.382× 10−10 m

interaction energies ϵLL = ϵ∗

ϵLS = 0.1− 1.0 ϵ∗

ϵSS = 10 ϵ∗

Variable Value in scaled units

solid or liquid particle mass 1

LJ particle diameter σLL = σLS = σSSσLS = 1.0

FCC edge length a = 1.560

integration time step ∆tint = 0.002

source temperature Tsource = 1.6

sink temperature Tsink = 1.0

LJ interaction energy εLL = 1

εLS = 0.1− 1.0

εSS = 10

bulk liquid density ρL ≈ 0.84

FCC unit cell density ρS = 1.0536

TABLE I. Symbols, numerical values and scalings for non-
dimensionalization of physical quantities based on fluid argon
[34–36]. Asterisk superscripts signify dimensional quantities.
The Boltzmann constant kB = 1.380649× 10−23 J/K.

Cell dimensions (scaled by σ∗) [001] [011] [111]

Lx 12.48 12.48 13.24

Ly 12.48 13.24 13.37

Lfixed (1 unit cell per end) 1.56 1.10 1.80

Lsource 39.00 39.71 40.53

Lhs 21.84 22.06 21.17

Lliq 31.20 30.89 29.72

Lcs 21.84 22.06 21.17

Lsink 39.00 39.71 40.53

Total length along z axis 156.00 156.64 156.72

TABLE II. Dimensions of the computational cell in Fig. 2(a)
(in reduced units).

layers were constructed using the LJ potential in con-
trast to studies which utilize harmonic wall-spring mod-
els. Since the melting temperature of an LJ solid is esti-
mated to be Tm ≃ εSS/0.5 [38], the S/S interaction en-
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ergy was set to εSS = 10 to ensure those layers remained
in the solid state throughout the temperature range ex-
plored. At the start of each run, particles comprising
all solid layers were situated identically and arranged on
the lattice sites of an FCC crystal with unit cell edge
length a = 1.56 [39]. Each solid layer comprised an in-
teger number of unit cells to prevent overlap of particles
along cell edges. The unit cells were oriented with their
surface normal representing the [001], [011] or [111] facet
oriented along the ẑ axis. Dimensions for each orien-
tation are shown in Fig. 2(b). The coordinates of the
smallest reciprocal lattice vectors for the real space facet
orientations are listed in Table III. Periodic boundary
conditions were enforced along the x̂ and ŷ axes. The
L/S interaction strength was varied in increments of 0.1
over the range 0.1 ≤ εLS ≤ 1.0 spanning behavior from
non-wetting to strongly wetting, respectively. Different
values of the thermal flux Jz were generated naturally by
different choice of L/S interaction energy εLS and facet
orientation. Simultaneous measurements extracted from
the colder and hotter side of the liquid layer also allowed
examination of the influence of local temperature on var-
ious static and dynamic quantities.

FCC facet ko,x ko,y

[001] ±4.03 ±4.03

[011] (shortest) ±4.03 0.00

[011] (2nd shortest) 0.00 ±5.70

[111] (quadrants) ±5.70 ±3.29

[111] (vertical axis) 0.00 ±6.58

TABLE III. Set of shortest reciprocal lattice vectors (RLVs)

k⃗o = (ko
x, k

o
y) (in reduced units) for three FCC facets of a real

crystal lattice with unit cell edge length 1.56σ∗. The RLVs
for [001] are (2π/a∗)(êx, êy), for [011] are (2π/a∗)(êx, 0) and

for [111] are (2π/a∗)(
√
2êx,

√
2/3êy) and (2π/a∗)(0,

√
8/3êy).

The shortest and 2nd shortest RLVs for the [011] facet are
relevant to this study, as discussed in the text.

A. Temperature control

The NEMD simulations were carried out using the
open source package LAMMPS [40, 41]. The equations of
motion were integrated by the Verlet method [35] based
on an time integration step ∆tint = 0.002. Liquid parti-
cles, initially situated on the lattice sites of an FCC crys-
tal, were sequentially removed from the fluid layer until
the bulk liquid density achieved a value ρbulk ≈ 0.84.
Particles in the liquid and unthermostatted solid lay-
ers were initially equilibrated using a Nosé-Hoover ther-
mostat [42] to a temperature Tequil = 1.3 for a period
105∆tint = 200. This thermostat was then switched off
and two Langevin thermostats [43] then activated and
set to the fixed point values Tsource = 1.6 and Tsink = 1.0

as determined from the Langevin equation:

d2r⃗i
dt2

= −
∑
i ̸=j

dUij(r)

dr
r̂i −

1

τdamp

dr⃗i
dt

+ F⃗stoch , (6)

where r⃗i is the 3D spatial coordinate of particle i and

F⃗stoch denotes a random force vector modeled by a nor-
mal distribution of magnitude [Tset/(τdamp ∆tint)]

1/2

with set point temperature Tset. The damping constant
was chosen to be τdamp = 500 ∆tint = 1.0. After activa-
tion of the Langevin thermostats, particles were subject
to an additional stabilization period of 2×105∆tint = 400
to ensure steady state conditions. Particle trajectories in
the unthermostatted liquid and solid layers evolved ac-
cording to Newton’s equation of motion i.e. Eq. (6)
without the damping or stochastic term. The motion of
unthermostatted particles therefore derived exclusively
from LJ interactions with neighboring particles situated
within the potential cutoff radius r ≤ rc = 2.5. To en-
sure proper thermal calibration, it was confirmed that
for Tsource = Tsink, the simulations generated a uniformly
flat temperature profile throughout the unthermostatted
liquid and solid layers.

The thickness of the thermostatted layers Lsource and
Lsink, which ranged from about 39 to 40 (in reduced
units), was chosen to exceed the length of a typical
phonon mean free path Λ so as to avoid spurious re-
duction in thermal boundary resistance [44]. It has been
shown that for Λ = cℓ×τdamp ≤ 2Ls, where cℓ is the lon-
gitudinal speed of sound [22], phonons generated within
the thermostatted layers are dissipated before undergo-
ing reflection and propagation from the outer boundary
to the L/S interface. Stevens et al. [38] have reported
that the value cL for an FCC crystal is well approximated
by the relation cl = 9.53

√
εSS . For the parameter val-

ues used in this study, namely εSS = 10, τdamp = 1 and

Ls = 39, the inequality Λ = cℓ × τdamp = 9.53
√
10 ≃

30 ≤ 2Ls = 78.0 was well satisfied.

Previous studies in the literature [21, 22] have exam-
ined the influence of liquid pressure on the reduction
in thermal boundary resistance. We confirmed that the
pressure within the bulk liquid was very weakly depen-
dent on FCC facet orientation and not a significant con-
tributor to any reductions in thermal slip length mea-
sured. Specifically, the pressures within the bulk liq-
uid for εLS = 0.1 were measured to be 2.72 ± 0.03[001],
2.78 ± 0.02[011] and 2.86 ± 0.02[111] and for εLS = 1.0
were measured to be 2.54 ± 0.02[001], 2.60 ± 0.03[011]
and 2.66± 0.03[111]. All things equal, non-wetting fluids
gave rise to a slightly higher bulk liquid pressure, as ex-
pected. For the density and temperature range explored
in this study, it was confirmed that roughly 90% of the
bulk liquid pressure stemmed from the virial (not kinetic)
contribution.
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B. Averaging procedure for time-independent
quantities

After thermal stabilization was complete and a steady
thermal flux established, averages of various time-
independent quantities were carried out as follows. The
motion of particles was monitored for a total time ttotal =
5×106∆tint = 104, which was divided into ten equal and
non-overlapping subdivisions. Within each subdivision,
the motion was sampled at intervals of 500∆tint = 1.0
and so the mean values extracted from each subdivision
were based on 1000 samplings. This sampling interval
was chosen based on inspection of the velocity autocor-
relation function, which decayed to zero by t = 1.0 (see
Fig. 11). In what follows, the reported average values
and standard deviations of all time-independent quan-
tities, which are denoted by angular brackets ⟨ · ⟩, were
computed by averaging the mean values from each of the
ten subdivisions.

Variation of quantities along the ẑ axis was obtained
by partitioning the unthermostatted liquid and solid lay-
ers into non-overlapping bins of volume Lx×Ly ×∆zbin,
where ∆zbin is the bin width. A very slender bin width
∆zbin = 0.016 was used in computing density profiles
⟨ρ(z)⟩ to ensure resolution of spatial oscillations near the
L/S interface indicative of liquid layering. The average
density ⟨ρ(z)⟩ within each bin was computed from the
ratio ρbin = ⟨Nbin⟩/Vbin, where ⟨Nbin⟩ is the average
number of particles within a bin. For the values given
in Table II, the bin volume corresponding to each facet
orientation was 2.49 for [001], 2.64 for [011] and 2.83 for
[111]. In this study, the mass density and number den-
sity are equivalent since the masses of solid and liquid
particles were all set to unity.

A coarser resolution ∆zbin = 0.785 was used for ex-
tracting the temperature distribution ⟨T (z)⟩. Too small
a bin width causes excessively noisy velocity and thermal
profiles from too small values of Nbin. It was confirmed
that even for the narrowest bin width ∆zbin = 0.016,
⟨T (z)⟩ did not exhibit oscillations near the L/S interface.
The average temperature Tbin within a bin was extracted
from the equipartition relation

Tbin =

〈
1

3Nbin

Nbin∑
i

v⃗2i

〉
, (7)

where i denotes a particle within the bin with a (3D)
velocity vector v⃗ = (vx, vy, vz). In computing the thermal
gradient within the interior liquid and solid layers and
corresponding thermal slip length, only the linear portion
of the distribution T (z) away from the L/S interface was
fitted.

Temperature jumps at the L/S boundary were ex-
tracted from the difference between the temperature pro-
files linearly extrapolated from the interior solid and liq-
uid layers evaluated at the midpoint of the depletion layer
thickness, defined as the distance along the ẑ axis sepa-

rating the peak values in density of the first adjacent solid
and liquid layer. As expected, depletion layer thickness
was found to vary with εLS , facet orientation and contact
layer temperature. The thermal slip length, measured at
both the hotter and colder sides of the liquid layer, was
computed from Eq. (3).

In what follows, the contact layer refers exclusively to
the first layer of liquid particles immediately adjacent to
the solid surface. The thickness of this layer was mea-
sured to be the distance between neighboring minima in
ρ(z) bracketing the first oscillation in the liquid density.
This distance was evaluated unambiguously because of
the distinct stratification in liquid density near the L/S
interface for all parameter values explored.

As discussed in Section III, different choices of εLS

and crystal facet orientation naturally yielded different
values of the thermal flux Jz, which was evaluated from
estimates of

Jz =
1

Lx × Ly

Enet(t)

t
, (8)

where Enet(t) is the net thermal input over a time interval
t that was required to maintain the Langevin reservoirs at
the set point temperatures Tsource and Tsink. It was con-
firmed that Enet increased linearly in time, as required for
steady state conditions. The thermal conductivity values
representing the interior liquid and interior solid layers
was extracted from the ratio k = Jz/|dT/dz|, where the
thermal gradient was obtained by a least squares fit over
the linear portion of the thermal profile.

Steady state particle distribution patterns within the
interior liquid, contact layer and first crystalline layer
were evaluated using the static 2D radial distribution
function given by

g∥(r) =

〈
Lx × Ly

N∥

npairs(r)

2πr∆r

〉
, (9)

where N∥ is the number of particles within the selected
layer and npairs is the number of particle pairs within
an annulus of radius r − ∆r/2 ≤ r ≤ r + ∆r/2 with
∆r = 0.01.

Additional information about long range order within
the contact layers was obtained from the static 2D struc-
ture factor given by [45]

S∥
c (k⃗) =

〈
1

N2
c

Nc∑
p=1

exp
(
ik⃗ · r⃗p

) Nc∑
q=1

exp
(
− ik⃗ · r⃗q

)〉
, (10)

where Nc is the number of particles in the contact layer

and k⃗ = (kx, ky) is a planar wave vector. Eq. (10) is

normalized such that 0 ≤ S
∥
c (k⃗) ≤ 1. It was confirmed

that within statistical error, contributions from the imag-
inary part of Eq. (10) were vanishingly small. Results in
Section III represent the real contribution to Eq. (10).
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Facet εLS ⟨Nc⟩hotter ⟨Nc⟩colder
[001] 0.1 104.3± 0.4 109.9± 0.4

[011] 0.1 116.6± 0.4 125.3± 0.4

[111] 0.1 122.0± 0.4 128.6± 0.4

[001] 1.0 114.9± 0.4 125.0± 0.5

[011] 1.0 80.7± 0.3 92.9± 0.4

[111] 1.0 134.1± 0.4 161.4± 0.5

TABLE IV. Average total number of particles ⟨Nc⟩ in the con-
tact layer at the hotter and colder side for εLS = 0.1 and 1.0
and three facets.

C. Averaging procedure for time-dependent
quantities

Time-dependent and correlated behavior of particles in
the contact layer was based exclusively on collections of
liquid particles which remained within the layer through-
out the entire measurement interval. Particles which ex-
ited the contact layer but then returned were excluded
from the current analysis. For a given solid facet orien-
tation, it was generally the case that an increase in εLS

or decrease in contact layer temperature led to longer
particle residence times.

Once steady state thermal conditions had been estab-
lished, averages of time-dependent quantities were car-
ried out using the following block averaging scheme.
For the first block, tracking of particle trajecto-
ries was initiated at data collection times to =
(0, 10, 20, . . . , 475, 000) × ∆tint then subsequently sam-
pled at short intervals 10∆tint = 0.02. Data collection
spanned a period to ≤ t ≤ to + tf , where tf was se-
lected to be the longest interval of time during which at
least ten particles remained exclusively within the con-
tact layer throughout the period of measurement. For
comparison, listed in Table IV are measurements of the
average total number of particles within the hotter and
colder contact layer for two values of εLS and the three
facets. Therefore, by the time only ten particles from the
original occupancy number remained, roughly 90% had
exited the layer at least once.

Each initial time for data collection to therefore led
to slightly different values of tf . For meaningful aver-
ages with a single block, the smallest value tf was used
to compute the time average relevant to the block. A
similar procedure was applied to two subsequent non-
overlapping blocks, with the first data collection time in
the sequence set to the value tf of the previous block.
The smallest overall value tf recorded for three such
blocks was then used to extract the final average reported
pertaining to the overall block (B) average. Relations for
quantities indicated by the symbol ⟨ · ⟩Bto, therefore denote
the final average value based averages over to followed by
block averaging. In all cases, the time tf far exceeded the
decay time of the velocity autocorrelation function by an

order of magnitude.
Dynamic regimes describing different types of particle

motion within the contact layer were quantified in two
ways. The 2D mean-squared displacement was computed
as

MSD∥
c (t) =

〈
1

Nc

Nc∑
j

∣∣∣r⃗j(to + t)− r⃗j(to)
∣∣∣2〉B

to

, (11)

where r⃗j(t) = [xj(t), yj(t)] is the 2D position vector of
particle j within the contact layer and Nc = Nc(to, tf ) is
the number of particles permanently occupying the con-
tact layer throughout the measurement interval to ≤ t ≤
to + tf subject to the constraint Nc ≥ 10. The 2D self-
intermediate scattering function was evaluated according
to

F ∥
c (k⃗o, t) = (12)〈

1

Nc

Nc∑
j=1

exp
{
i k⃗o ·

[
r⃗j(to + t)− r⃗j(to)

]}〉B

to

,

where k⃗o represents the wave vector corresponding to the

first peak in the structure factor. As discussed earlier, k⃗o
was found to equal the smallest reciprocal lattice vector
except for the [011] case below the structural transition
which coincided instead with the second smallest recip-
rocal lattice vector. The results in Section III represent

the real contribution to F
∥
c (k⃗o, t) - the imaginary contri-

butions were found to be negligibly small by comparison.
The velocity autocorrelation function for particles in the
contact layer was determined in similar fashion according
to

V ACF ∥
c (t) =

〈
1

Nc

Nc∑
j=1

v⃗j(to + t) · v⃗j(to)

〉B

to

. (13)

All measurements of quantities reported in this work can
be found in Tables VII through IX.

III. RESULTS

A. Thermal equilibrium of the contact layer

Shown in Fig. 2(c) is a sample plot of the particle
speed distribution in a hotter and colder contact layer
against a [011] facet for εLS = 1.0. Superimposed on
the data are least square fits to the Maxwell-Boltzmann
distribution (in reduced units)

P(vi) = 4π
( 1

2πT

)3/2

v2i exp
(
− v2i

2T

)
for i ∈ Nc, (14)

where v2i = (vi,x)
2 + (vi,y)

2 + (vi,z)
2. Least squares fits

to Eq. (14) yielded the fit constants T fit
h = 1.526± 0.001

and T fit
c = 1.074 ± 0.0009. The average kinetic en-
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ergy in the contact layer, as derived from the Maxwell-
Boltzmann distribution, yields the equipartition relation.
Least squares fits to Eq. (7) yielded very similar esti-
mates Th = 1.529 ± 0.006 and Tc = 1.074 ± 0.004, as
should be the case.
As expected, the distribution of particle speeds in Fig.

2(c) is broader and the average speed and therefore ki-
netic energy higher for the particles in the hotter layer.
While the overall layered S/L/S system describes a state
of thermal non-equilibrium due to the application of a
steady temperature gradient, this distribution of veloci-
ties confirms that the contact layer is in a state of local
thermal equilibrium. It was also confirmed that for the
parameter values used in this study, the liquid film re-
mained quiescent and never underwent any convective
flow.

B. Characterization of contact layer by
time-independent quantities

1. Influence of crystal facet, L/S interaction energy and
temperature on contact layer density

It is known from prior molecular dynamics studies of
systems in thermal equilibrium [12–14, 46, 47] and non-
equilibrium [16, 22, 28, 48–51] that a fluid in contact
with a featureless or structured solid will exhibit an os-
cillatory density profile ρ(z). The characteristic peak to
peak separation is normally set by the repulsive part of
the inter particle potential. For a sufficiently thick liquid
layer, the amplitude and number of oscillations increases
at colder temperature or higher values of εLS , with rapid
decay to the value of the interior liquid. These general
features are evident too in Fig. 3(a)-(f) showing the in-
fluence of εLS , facet and local temperature on the liquid
density profile. The horizontal line is the reference value
ρ = 0.84 of the interior liquid chosen for this study.

The results in Fig. 3(a)-(f) confirm that the spacing of
crystal planes is smallest for the [011] and largest for the
[111] facet and that the solid layer peak density is largest
for [111] and smallest for [011], in line with the facet di-
mensions in Fig. 2(b). The degree of liquid layering,
indicated by the amplitude and number of oscillations,
is smallest for the [011] facet and largest for the [111]
facet. This suggests that particles in the contact layer
against a [011] facet can move more easily between layers
in comparison to comparable particles against the other
two facets. We shall return to this point when discussing
results extracted from actual particle trajectories. At
both the hotter and colder interface, it is apparent that
the liquid facing the [011] facet also undergoes a struc-
tural transition at some value εLS which depends on tem-
perature. This abrupt jump, particularly noticeable on
the hotter side, is evident from the shift in the location
of the first liquid oscillation. For values εLS above the
transition, the depletion layer thickness for the [011] case
decreases while that for the [001] and [111] undergo a
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FIG. 3. (a) - (f) Liquid density ρ(z) at the hotter and colder
L/S interface for three facets and 0.1 ≤ εLS ≤ 1.0 in incre-
ments of 0.1. Also shown are the first few peaks of the solid
density for εLS = 1.0 (amplitude exceeds plot boundary) and
the interior liquid density ρbulk = 0.84 (grey horizontal line).
Numerical values listed next to the first solid layer denote the
peak solid density (evaluated with bin width ∆z = 0.016).
(g) Contact density ρc evaluated by integration over the first
liquid layer, as described in the text. Error bars are smaller
than the line thickness and not visible.

slight increase. That said, the depletion layer thickness
for the liquid facing a [011] facet is always the smallest
of all facets no matter the value εLS .
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Shown in Fig. 3(g) is the contact density ρc for the
contact layer facing different facets on the hotter and
colder side with increasing εLS . In all cases, ρc rises
monotonically with increasing εLS , although the slope of
the rise is highest for colder temperature. In comparing
the influence of facet orientation either on the hotter or
colder side, for a given value of εLS , ρc is smallest against
the [011] facet by a significant amount and largest against
the [111] facet. The structural transition noted earlier
for the [011] case seems evident here too for 0.3 . εLS .
0.4; below this range, ρc is rather insensitive to εLS and
temperature.

It is well known that the interfacial energy density (i.e.
energy per unit area of the interface) of liquid particles
against a structured or unstructured solid wall is com-
prised of three distinct contributions - namely, the Gibbs
surface excess energy, the excess entropy and the excess
number of absorbed liquid particles [46]. Although be-
yond the scope of this current work, quantification of the
relative contributions to the interfacial energy density for
increasing value εLS , different facet orientation and dif-
ferent local temperature will provide more insight into
the mechanism driving the structural transition of the
contact layer for the [011] case.

2. Influence of crystal facet and L/S interaction energy on
thermal profiles and thermal flux

Shown in Fig. 4(a)-(c) are the temperature profiles
T (z) throughout the liquid and unthermostatted solid
layers. The sizeable jumps at the hotter and colder side
reflect the influence of thermal boundary resistance at
a L/S interface. Away from the interface, the profiles
are linear and the thermal gradient therefore constant,
confirming the layers are Fourier conductors. Since the
interior liquid density depends on temperature and pres-
sure, there is no symmetry about the z = 0 axis, as
evident. At steady state and in the absence of convec-
tive flow, energy conservation requires that the thermal
flux Jz be a constant throughout the unthermostatted
layers. Therefore, the layer containing liquid must main-
tain a much larger magnitude of the thermal gradient,
since the thermal conductivity of a simple liquid is always
much smaller than that of a solid. The results show that
the slope of T (z) in the liquid layer increases monotoni-
cally with increasing value εLS , corresponding to smaller
values of the thermal jump. Measured values of the ther-
mal flux, thermal gradient and thermal conductivity can
be found in Table VII and values of the thermal jump
and contact layer temperature in Table VIII. The data
confirm that an increase in L/S interaction energy εLS

reduces thermal boundary resistance such that the tem-
perature of the contact layer Tc is closer to the surface
temperature of the solid facet. The data also reveal that
for a given value εLS , the thermal jump ∆T is not al-
ways higher at the colder interface, as one might intuit
naively. In fact, the data in Table VIII confirm that for
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FIG. 4. (a)-(c) Steady state temperature distribution T (z)
throughout the solid and liquid layers for three facet orien-
tations and 0.1 ≤ εLS ≤ 1.0 in increments of 0.1. (d) Cor-
responding values of the steady thermal flux Jz. Connecting
segments are only a guide to the eye.

the same value εLS , the ratio ∆T |hotter/∆T |colder can be
smaller, equal to or larger than one. This is because even
for the same value εLS and same facet, the thermal flux
Jz is different due to the influence of local temperature.
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It is for this reason that proper comparison between sys-
tems of the thermal boundary resistance or thermal slip
length requires normalization by the thermal flux, just as
indicated by the definitions in Eq. 1 and Eq. (3).

Recall that in this study, the set point temperature of
the thermal source and sink were set at Tsource = 1.6 and
Tsink = 0.6 for all simulations conducted. The steady
thermal flux Jz propagating through the system was
therefore not imposed but arose naturally by choice of
εLS and facet orientation. These two input parameters
also determined the contact layer temperature. For the
geometry used in this study, the L/S interaction energy
εLS and facet choice therefore essentially established “in-
terface filters” which regulated the magnitude of the ther-
mal flux crossing the L/S interface as well as the contact
layer temperature. The results in Fig. 4(d) show that for
the same value εLS , the highest thermal flux is achieved
with the [011] facet by a significant amount.
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FIG. 5. Reduction in the thermal slip length LT with (a)
increasing L/S interaction energy εLS and (b) increasing con-
tact density ρc at the hotter and colder interface for three
facet orientations. Superposed solid and dashed curves rep-
resent least squares fit to Eq. (15) and Eq. (16), with fit
constants listed in Table V and Table VI, respectively.

3. Dependence of the thermal slip length on L/S
interaction energy and contact density

Shown in Fig. 5(a) is the reduction in the thermal
slip length, computed from Eq. (3), at the hotter and
colder L/S interface, for increasing value εLS and increas-
ing contact density for the three solid facets. In all cases,
the thermal slip length decreases monotonically with in-
creasing εLS . The reduction in LT is higher for εLS . 0.6
and more gradual above that value showing less sensitiv-
ity to εLS for more wetting liquids. The key result is
that for a given value εLS , the thermal slip length is al-
ways smallest for the [011] facet by a considerable amount
and largest for the [111] facet. A reduction in thermal
slip length as εLS increases has previously been reported
in NEMD studies [18, 19, 51] relying on different ther-
mostatting methods, different L/S media and different
parameter ranges, but no general relation proposed. Our
data in Fig. 5(a) are well fit by the quadratic relation

LT (εLS) = a− b εLS + c ε2LS , (15)

indicated by the superposed solid and dashed lines rep-
resenting least square fits, where a, b and c are positive
constants dependent on facet orientation and and Tc. Fit
coefficients are listed in Table V.

Shown in Fig. 5(b) is the reduction in LT for increasing
value ρc, where of course the value ρc cannot be specified
but emerges naturally in response to the parameter val-
ues input into the simulation. Except for a few notable
points, the thermal slip length generally decreases mono-
tonically with increasing value ρc, reflecting the influence
of the L/S coupling energy. The important result here is
that either at the hotter or colder L/S interface, the ther-
mal slip length is smallest for the [011] facet and largest
for the [111] facet. The superposed solid and dashed lines
indicate least square fits to the reciprocal function

LT (ρc) =
α1

ρc − α2
, (16)

where α1 and α2 are positive constants that depend on
facet orientation and Tc; fit constants are listed in Ta-
ble VI. For the [011] facet, the data points for εLS =
0.1, 0.2, 0.3 on the colder side, and for 0.1 ≤ εLS ≤ 0.7
on the hotter side deviate more significantly from the
reciprocal relation, as indicated by the larger standard
deviation values reported in Table VI. As mentioned ear-
lier in this section and to be discussed in more detail in
Section III B 5, the contact layer against the [011] facet
undergoes a structural transition as a certain value of
εLS , which varies with temperature. The data points in
Fig. 5(b) which deviate most from the reciprocal rela-
tion in Eq. 16 represent those system below the tran-
sition point. This transition induced by the [011] facet
was also evident in Fig.3(g) at the colder interface, but
less noticeable at the hotter interface where ρc is not as
sensitive to ε. No similar transition was observed for the
[001] or [111] facet for the parameter range in this study.
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Taken together, the results in Figs. 3(g), 4(d) and 5(b)
are seemingly counterintuitive. For the same value εLS ,
a hotter or colder contact layer against the [011] facet
generates the highest thermal flux Jz of all three facets
despite having the smallest - not largest - contact den-
sity ρc . Therefore, a higher contact density does not
uniquely predict a higher thermal flux (nor lower ther-
mal resistance or higher thermal conductance), as some-
times suggested [22, 31, 32]. In the original AMM model
proposed by Khalatnikov [52, 53], the relation governing
the thermal boundary resistance for superfluid helium
against a metal surface was shown to depend on several
variables such as the local temperature, liquid pressure,
elastic properties of the liquid and solid, and the excita-
tion spectra of electrons and different phonon branches
of the solid. An increase in one variable can therefore be
offset by other factors or confounding variables such that
no one variable is a unique predictor of TBR. The results
shown in Figs. 3(a) - (f) do suggest that systems with the
smallest depletion layer thickness, as for the [011] facet,
do appear to maintain the highest thermal flux. Similar
behavior [33] has been reported in NEMD simulations
of L/S media described by more complex intermolecu-
lar potentials describing water on silicon and water on
graphene coated silicon; however the depletion length in
that study was defined somewhat differently.

Facet H/C side a b c

[001] H 16.5± 0.5 19.0± 2.0 8.0± 1.0

[011] H 12.9± 0.2 15.9± 0.8 7.3± 0.6

[111] H 16.9± 0.3 20.0± 1.0 8.7± 0.8

[001] C 18.7± 0.6 24.0± 2.0 11.0± 2.0

[011] C 14.7± 0.5 20.0± 2.0 9.0± 1.0

[111] C 19.5± 0.6 26.0± 2.0 12.0± 2.0

TABLE V. Least squares fit coefficients and standard devia-
tion values for parameters a, b and c in Eq. (15).

Facet H/C side α1 α2

[001] H 11.8± 0.4 0.88± 0.04

[011] H 8.40± 1.0 0.17± 0.12

[111] H 14.2± 0.3 1.00± 0.02

[001] C 6.60± 0.2 0.94± 0.02

[011] C 2.70± 0.9 0.63± 0.12

[111] C 8.03± 0.4 1.03± 0.04

TABLE VI. Least squares fit coefficients and standard devia-
tion values for parameters α1 and α2 in Eq. (16).

4. 2D radial distribution function of contact layer and first
crystal plane

Shown in Fig. 6 are the 2D radial distribution func-
tions g∥(r) for particles in the contact layer at the hotter
and colder interface for three facet orientations with in-
creasing value εLS . Also superimposed are the results for
the first crystal plane for εLS = 1.0 and the interior liq-
uid. It was determined (not shown) that g∥(r) within the
interior liquid and first crystal plane varied weakly with
εLS . The lack of sensitivity to εLS of the interior liquid
region is likely due to the fact that the layer thickness was
fairly large and the interior region therefore well shielded
from the L/S interface. We also recall that the crystal
solid used in this study was constructed using large ra-
tios εSS/εLS of the order of 10 to 100, thereby reducing
sensitivity of g∥(r) for the first crystal plane to changes
in εLS .
As expected, the colder the interface temperature and

the stronger the L/S coupling, the stronger the com-
mensurability between the radial distribution of particles
within the contact layer and those of the adjacent crystal
facet. For the [011] facet, comparison of the distribution
function g∥(r) between the contact layer and interior liq-
uid reveals that at smaller values εLS , the location and
shape of the first two liquid peaks almost superimpose,
with a small but gradual increase in the mismatch as r
increases. This indicates that the local spatial distribu-
tion of particles in the contact layer is more isotropic
and more liquid-like than for the contact layers against
the [001] and [111] facet. This is especially evident for the
colder contact layer for εLS ≤ 0.3 and the hotter contact
layer for εLS ≤ 0.7. Notably, this is the same parameter
range which we noted earlier gave rise to the deviations
in the reciprocal functions shown in Fig. 5(b). Also ev-
ident from Fig. 6 is that while the contact layer against
the [001] and [111] facet undergoes a smooth and gradual
increase in g∥(r) as εLS increases, the layer against the
[011] facet manifests an abrupt jump in behavior, indica-
tive of the structural transition noted earlier.

5. Static 2D structure factor of contact layer

The results in Fig. 7 for the static 2D structure fac-
tor given by Eq. (10) provide additional insight into the
degree of commensurability between the organization of
particles in the contact layer and first crystal plane. The
logarithmic color scale in Fig. 7 spans three orders of
magnitude. Generally, for the same value ε, the colder
the contact layer, the closer the structure factor resem-
bles that of the crystal facet, as indicated by the set of
discrete points reflecting the maxima. The hotter the
contact layer, the more fluid-like the particle packing, as
indicated by the circular ring patterns. For all facets, the
hotter contact layers for εLS = 1.0 show stronger com-
mensurability with the underlying crystal facet than do
the colder contact layers for εLS = 0.1. Most notably,
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FIG. 6. (a) - (f) 2D radial distribution function g∥(r) given by
Eq. 9 for the hotter and colder contact layer (colored curves)
for 0 ≤ εLS ≤ 1.0 in increments of 0.1 and three facets. Shown
for comparison is the distribution for the interior liquid (black
curve) as well as the first crystal plane for εLS = 1.0 (red and
blue shaded peaks).

for either εLS = 0.1 or 1.0, the [011] facet always induces
much longer-range translational order within the contact
layer than do the other two facets.

Closer inspection of the images in Fig. 7 and other
images for different values of εLS (not shown) reveals
that while the global maxima (small red solid dots) of

S
∥
c (kx, ky) for the [001] or [111] case always align with

the wave vectors defining the shortest RLVs, the [011]
case behaves differently due to the structural transition
noted earlier. For εLS = 0.1, which is below the tran-

sition value, the maxima of S
∥
c (kx, ky) coincide not with

the smallest but the second smallest RLVs, specified in
Table III). For εLS = 1.0, which is above the transition,
the maxima occur at the the shortest RLVs of the crystal
facet. Based on a review of the data for all choices εLS ,

the real space configuration of particles in the colder con-
tact layer is characterized by a preferential alignment of
particles along the x̂ axis for εLS ≤ 0.3 and preferential
alignment along the ŷ axis for εLS ≥ 0.4. This switch in
alignment also occurs within the hotter layer in crossing
the value 0.7 ≤ εLS ≤ 0.8. This additional information
further informs the trends noted earlier in Sections III B 3
and III B 4.
The maxima of S

∥
c (kx, ky), denoted by Smax =

S
∥
c (ko,x, ko,y), are plotted in Fig. 8 for increasing value

εLS . For the [111] case, the results show greater sensitiv-
ity to εLS for the colder layer, as expected. Also, while
Smax for the [001] and [111] facets shows a smooth and
gradual increase with increasing εLS , the [011] case mani-
fests sizeable jumps at 0.7 ≤ εLS ≤ 0.8 in the hotter layer
and at 0.3 ≤ εLS ≤ 0.4 for the colder layer. These jumps
correspond exactly to the switch in particle alignment
which occurs for liquid particles against the [011] facet.
Above the transition, the values Smax for the [011] case
always and significantly exceed the values for the other
two facets. Therefore particle alignment along the ŷ axis
reflects much stronger commensurability with the peri-
odic pattern set by the corrugation of the crystal surface
potential. Below the transition value, Smax for the colder
layer against the [001] facet slightly exceeds that for the
[011] facet but this difference altogether disappears at
higher temperatures.

C. Characterization of contact layer by
time-dependent quantities

1. 2D mean squared displacement of particles which never
leave the contact layer

Shown in Fig. 9 are sample snapshots from individual
runs of the location of particles in the hotter and colder
contact layer for two values of εLS and three facet ori-
entations. The time texit denotes the instant after which
one of four randomly tagged particles escaped the contact
layer. Accurate inferences about particle motion and dy-
namics, of course, requires extensive ensemble averaging,
as discussed in Section II. However, the instantaneous
snapshots from a single run nonetheless reveal a few in-
teresting trends, later supported by proper ensemble av-
eraging as discussed later in this section.
For a given facet with εLS = 1.0, a colder contact layer

maintains a higher liquid surface density and longer par-
ticle residence times, as expected. Also, such layers more
strongly adopt the dimensions and symmetry of the ad-
jacent crystal surface potential, an effect which is not as
evident to the eye for εLS = 0.1. For εLS = 1.0, perhaps
the most interesting feature is that particles against ei-
ther the hotter or colder [011] facet undergo the shortest
displacement from their initial position, likely indicative
of tighter binding with the solid surface, and yet expe-
rience the smallest residence times in comparison to the
results for the other two facets. This tentative obser-
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FIG. 7. Static 2D structure factor S
∥
c (kx, ky) [Eq. 10] for the hotter and colder contact layer for two values of L/S interaction

energy and three facet orientations. Maximal values appear as small solid red dots.

vation, based only on a few single snapshots, suggests
that particles against the [011] facet more readily escape
the layer perhaps in response to hindered diffusion in-
plane. In what follows, we support this hypothesis with
a more comprehensive set of data extracted from many
more particle trajectories, which are properly ensemble
averaged.

Some key features of the contact layer become evident
when examining temporal correlations obtained by ex-
tensive ensemble and block averaging of single particle
trajectories. Shown in Fig. 10 is the 2D mean square

displacement MSD
∥
c (t) plotted on logarithmic axes for

particles in the hotter and colder contact layer for three
facet orientations and 0.1 ≤ εLS ≤ 1.0. These results are
exclusively based on particles which never left the con-

tact layer throughout the measurement interval shown.
As described in Section IIC, the measurement interval
was terminated once fewer than ten particles satisfied
that minimum occupancy condition. Runs conducted
with different input parameter values therefore yielded
different terminal times.
The superposed lines in Fig. 10(a)-(f) signify the theo-

retical exponents for the early (E) and late (L) time mo-
tion of a particle in a bulk homogeneous isotropic fluid far
from any boundary or interface. These exponent values
describe ideal ballistic motion (γE = 2) and diffusive mo-
tion (γL = 1). In all cases for the system under study, the
influence of the crystal surface potential diminishes the
magnitude of these exponents, as evident in Fig. 10(g).
In Table IX, the exponents for γE were extracted from
least square fits over the interval 0.02 ≤ t ≤ 0.10 and
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contact layer for three facets and 0 ≤ εLS ≤ 1.0 in increments
of 0.1. Connecting segments are only a guide to the eye. Co-
ordinates of the relevant reciprocal lattice vectors are listed
in Table III.

for γL over the interval spanning the last decade in time.
For motion showing plateau-like response following the
(sub) ballistic regime, as observed for the colder [011]
facet for ε ≥ 0.4 or hotter [011] facet for ε ≥ 0.8, the
least squares fits were extracted using only the last half-
decade. This is because for some parameter values, the
plateau-like regime extended only a short period and it
was preferable in extracting exponent values to use the
same interval in time. Nevertheless, it is clear that the 2D
mean square displacement of particles against the [011]
facet exhibits the largest departure from the ideal value
γL = 1, reflecting a significant retarding influence from
the crystal surface potential.

The results in Fig. 10 confirm some interesting fea-
tures. The behavior of particles against the [001] and
[111] facets show a smooth transition from sub-ballistic
to sub-diffusive motion, with a gradual reduction in the
magnitudes of γE and γL with increasing value εLS . By
contrast, particles against the [011] facet experience a
significant slowdown following the sub-ballistic regime,
with a notable drop in the value γE exactly at the val-
ues of εLS where there occurs a structural transition dis-
cussed earlier. The motion both prior and subsequent to
this transition is indicative of 2D caged motion whereby
longer excursions from diffusive-like motion are severely
repressed. Below the transition in εLS , caged motion is
weaker. Above the transition, particle localization is en-
hanced and caging quite strong. Against the colder [001]
and [111] facets, one also observes a small transient slow-
down in mean square displacement quickly followed by a
longer sub-diffusive regime. The caged motion induced
by the colder [001] and [111] facets is very weak, even for
the largest values of εLS .

The fitted power law exponents plotted in Fig. 10(g)
and tabulated in Table IX reveal some interesting fea-
tures. For all parameter ranges tested, the exponents

γE , which span the limited range 1.83 . γE . 1.90, are
always smaller than the ideal value 2.0. The motion of
particles in the contact layer is therefore slowed in com-
parison to ideal ballistic motion in a simple homogenous
fluid but not by much. Furthermore, the values γE are
relatively insensitive to facet orientation and temperature
and exhibit only a slight decrease as εLS increases. This
minor reduction in exponent is expected since ballistic-
like motion is by its very nature inertia-dominated [54]
and therefore should not be as sensitive to the influence
of the crystal surface potential. For a simple bulk ho-
mogenous and isotropic fluid, the mean square displace-
ment in the ballistic regime scales according to T × t2

(i.e. (kBT/m)t2 in dimensional units). (Incorporation of
hydrodynamic memory effects [55, 56] is known to alter
this relation slightly such that the particle mass m is re-
placed by a slightly larger effective mass to account for
the fraction of surrounding fluid displaced by the motion
of the particle.) The entries in Table IX and correspond-
ing values of the contact layer temperature Tc in Table
VIII confirm that hotter particles undergo larger mean
square displacement even in the presence of a corrugated
surface potential for the values εLS tested.

As shown in Fig. 10(g), the exponents γL span a
much wider range and they too fall below the ideal value
1.0. At late times then, particle motion in the contact
layer experiences significant slowdown due to the influ-
ence of the periodically corrugated crystal surface poten-
tial. For similar parameter values, liquid particles against
the [011] facet undergo the smallest 2D mean square dis-
placement, while particles against the [111] facet undergo
the largest. Below the structural transition in εLS for
particles against the [011] facet discussed earlier, the val-
ues γL manifest sizeable jumps. Together with the results
in Fig. 8, this implies that the longer range the 2D struc-
tural order, induced by colder temperature and/or larger
values of ε, the smaller the 2D mean square displacement.
Clearly, the hindrance or suppression of 2D diffusive-like
motion in the contact layer is caused by significant energy
barriers established by the corrugated crystal surface po-
tential.

The caged motion inferred from γL for the [011] case,
especially notable above the structural transition, can
also be seen in Figs. 10 (b) and (e), where there oc-
curs a distinct plateau-like region with a small or vanish-
ing slope. For the colder layer at higher values of εLS ,
the 2D mean square displacement practically stalls due
to significant particle localization. This behavior spans
about one decade in time for the hotter layers and al-
most two decades in time for the colder layers. Near
t & 10−1 for larger values of εLS , the motion briefly re-
verses as particles undergo recoil within dynamic cages
just prior to onset of the 2D caged regime. At higher
temperatures and smaller values of εLS , this recoil is far
less pronounced.

Generally, the terminal time increases as εLS increases.
This is expected since larger L/S bonding energy should
cause more particles to remain situated within the con-
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FIG. 9. Sample snapshots from individual runs showing the position of particles in the contact layer at time texit (grey dots).
Highlighted are the trajectories (red, green, yellow and blue segments) of four randomly tagged particles with their final location
at t = texit indicated by a black circle. For the two images marked t = 100, all four tagged particles remained within the contact
layer at least through that time.

tact layer for longer periods of time before escaping to a
subsequent liquid layer. In comparing behavior against
different facets for similar parameter values, we note that
the [011] case for values εLS below the structural transi-
tion yields terminal times only slightly longer than those
for the other two facets. However above the transition,
the results in Figs. 10 (b) and (e) show a steep drop

in MSD
∥
c (t) and very short terminal times, which are al-

most an order of magnitude smaller - not larger - than for
the other two facets. Therefore, while the planar motion
of particles in the contact layer is severely repressed by
2D caged motion, the caged particles escape more rapidly
into the third dimension, so to speak, funneling thermal
energy toward the colder solid more rapidly.

We recall that under steady state conditions, as in this
study, the average density of particles in each liquid layer
remains fairly constant, dependent on the local temper-
ature and pressure. On average then, for every particle
that leaves the contact layer, another replaces it. At the
hotter L/S interface, the caged motion helps funnel hot-
ter more energetic particles to the next liquid layer along
the +ẑ axis, which is cooler. At the colder L/S interface,
the caged motion helps funnel colder less energetic par-
ticles to the next liquid layer along the −ẑ axis, which is
warmer. These particles are rapidly replaced by hotter

particles from the warmer layer, which then transfer en-
ergy to the first crystalline layer. In either case, the 2D
caging motion against the [011] facet enhances thermal
transfer near the interface when compared to the other
two facets.

The 2D caged motion against the [011] facet we have
described is unlike the 3D caged motion observed in equi-
librium simulations of glass-forming liquids. Glassy dy-
namics has been studied in simple hard sphere models
as the concentration approaches approaches the critical
packing fraction [57] and in binary mixtures of LJ parti-
cles upon approach to the vitrification temperature [58].
Three dimensional caged motion is known to occur in
complex fluids such as water, molten silicon, polymers
and long chain biological molecules, in part due to more
complex intermolecular potentials which are orientation
dependent. The formation of a plateau-like region in the
3D mean square displacement signaling 3D caging is nor-
mally attributed to two effects. Not only are individual
particles trapped in cages formed by neighboring parti-
cles, but those neighbors are also situated within other
cages, thereby causing a significant slowing in the overall
motion [59]. In such systems, the colder the tempera-
ture and the stronger the particle interaction energy, the
stronger the 3D dynamic cage and the longer the confine-
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FIG. 10. (a)-(f) Mean square displacement MSD
∥
c (t) given

by Eq. (11) for three facets and 0.1 ≤ εLS ≤ 1.0 in increments
of 0.1. The data shown is restricted to trajectories of particles
ten or more of which remain within contact layer throughout
entire measurement interval. Superposed lines denote expo-
nent values for ideal ballistic (γE) and ideal diffusive (γL)
motion. Vertical lines through icons signify standard devia-
tion. (g) Exponents extracted from least squares fit to data
in (a)-(f); connecting segments are a guide to the eye.

ment time before re-escape and re-trapping by another
cage. By contrast in our system, the colder the tem-
perature and the stronger the L/S interaction energy,
the stronger the 2D dynamic cage but the shorter the
confinement time and the more rapid the escape to the
adjacent liquid layer.
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FIG. 11. Velocity autocorrelation function V ACFc(t) given
by Eq. (13) for three facets and εLS = 0.1 and 1.0 for tra-
jectories of particles ten or more of which remain within the
contact layer throughout the measurement interval. Super-
scripts 3D and ∥ denote evaluation of Eq. (13) based either
on 3D or in-plane 2D velocity vectors, respectively.

2. 2D and 3D velocity autocorrelation function of particles
which never leave the contact layer

Caged motion can also be inferred from the velocity
autocorrelation function. Early simulations of fluids in
equilibrium modeled as LJ particles interacting via a soft
repulsive potential like U(r) = εLL(σ/r)

15 showed that
upon approach to vitrification, there develops a period of
negative velocity autocorrelation immediately following
the early ballistic regime [60, 61]. This behavior has been
attributed to the reversed motion of a particle undergoing
collisions with neighboring particles which encircle it by a
temporary mobile cage; the inclusion of attractive forces
enhances the cohesiveness or strength of the cage thereby
prolonging the period of transient confinement.
Transient negative autocorrelation is also seen in Fig.

11 showing the results for V ACF 3D
c (t) and V ACF

∥
c (t).

Comparing the time intervals here with the 2D mean
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square displacement in Fig. 10, it appears that the start
of the negative autocorrelation coincides with the end of
the sub-ballistic regime and onset of 2D caged regime. As
expected, the amplitude of the negative autocorrelation
is larger for particles inside a colder contact layer due to
the reduction in particle kinetic energy. Contrasting the
behavior for εLS = 0.1 and 1.0 shows a more pronounced
oscillatory behavior about zero upon escape from a tran-
sient 2D cage; these oscillations are related to stronger
memory effects associated with stronger influence from
the periodic crystal surface potential. The results also
indicate a there is a stronger dependence on facet orienta-
tion and layer temperature for εLS = 1.0 than εLS = 0.1,
again highlighting the influence of the periodic surface
potential on nearby liquid motion. The special character
of motion within a contact layer against the [011] facet
is again evident. For the same value εLS and similar
layer temperature, the [011] facet induces the strongest
yet shortest period of localization due to 2D caging quan-
tified by the larger amplitude but shorter period of neg-
ative velocity autocorrelation. For all parameter values
tested, the velocity autocorrelation function was found
to decay to zero beyond t & 1.0. The results indicate
that the caging effect is strongest for the [011] case and
weakest for the [111] case.

The liquid behavior against the [011] facet exhibits
another key feature most easily seen in Fig. 11 for
εLS = 1.0. Following the negative autocorrelation pe-

riod in V ACF 3D
c (t) or V ACF

∥
c (t), only the [011] case

gives rise to subsequent positive values. Furthermore,
the average time spent confined within a dynamic cage,
as measured from the time interval between zero crossing
points for transient trapping and escape, is shortest for
particles in the colder - not hotter - layer, a seemingly
counter-intuitive result. As discussed previously in evalu-
ating the results of Figs. 10 (b) and (e), for values of εLS

above the structural transition in the contact layer, par-
ticles adjacent to the [011] facet escape more rapidly. As
confirmed too by the results in Fig. 11 for the [011] case
as well, despite that such particles experience stronger
2D caged motion and therefore smaller 2D mean square
displacements, caged particles escape more rapidly into
the third dimension i.e. subsequent liquid layers.

Finally, while the curves for V ACF 3D
c (t) and

V ACF
∥
c (t) appear generally similar, there is an impor-

tant distinction worth noting. Comparison of the ampli-
tude for the negative autocorrelation between the three
facets and different layer temperatures for εLS = 1.0 re-
veals that the dominant contribution to the results shown
stems from 2D motion within the contact layer. This is
also true for εLS = 0.1 although the effect is less pro-
nounced due to less of an influence from the periodic
solid surface potential. This suggests that irrespective
of layer temperature and facet orientation, most of the
time spent in caged motion is caused by repeated tran-
sient trapping and escape while confined to the contact
layer and less so from confinement effects in the out-of-
plane direction (ẑ axis) caused by the liquid layering in

Fig. 3.

3. 2D self-intermediate scattering function of particles
which never leave the contact layer

The strength of caged motion is typically quantified
by the 2D self-intermediate scattering function (SISF)

F
∥
c (k⃗o, t) defined in Eq. (12), where k⃗o is the wave vec-

tor corresponding to the first peak in the structure fac-
tor. The results in Fig. 12 show that only for a small
parameter set and only for the [111] case does the mo-
tion undergo a direct transition from ballistic-like to
diffusive-like dynamics. The trajectories of particles in
those contact layers are therefore the most liquid-like.
All other curves in Fig. 12 exhibit some degree of caged
motion terminating at a non-zero value, without subse-
quent diffusive-like decay. For large εLS , the colder [111]
facet induces an unusual signature as well marked by a
lengthy interval of negative constant slope, behavior not
seen in 3D glassy systems either. Re-inspection of the
2D radial distribution in Fig. 6, 2D structure factor in
Fig. 7 and snapshots in Fig. 9 indicate that the negative
slope is likely due to the formation of an epitaxial contact
layer.
In conventional glassy systems undergoing caged mo-

tion, the 3D counterpart of Eq. (12) exhibits three
distinct regimes: early ballistic, intermediate caging
(plateau) and late time diffusion. Numerous studies
have shown that in many 3D glassy systems, the SISF
from early to late times can be fit by a double stretched
exponential, each term represented by the Kohlrausch-
Williams-Watt function. The onset of the plateau sig-
nals the transition from ergodic to non-ergodic behavior;
for this reason, the amplitude of the plateau region is
called the non-ergodicity parameter [58, 62, 63]. This
fitting function remains ever popular since the extracted
time constants provide estimates of the average relax-
ation times associated with early ballistic and late time
diffusive motion.
In the system under study, however, with the excep-

tion of the [111] facet for small εLS , the majority of curves
in Fig. 12 cannot be fit by the usual double exponential
function since they do not asymptote to zero despite that
the measurement interval extends three to four decades in
time. Instead, the curves terminate at a non-zero value,
whose magnitude depends on εLS , facet and tempera-
ture. Generally, it appears that the colder the layer tem-
perature or the larger the value εLS , the more prolonged
the plateau-like region and the larger the value F ∗).
The influence of facet orientation highlights some spe-

cial features of the [011] case. The curves in Fig. 12
(b) and (e) are well separated by a large gap due to the
structural transition described earlier in Fig. 8 and Fig.
10(g). The two sets of curves exhibit different charac-
ter. For smaller values εLS , the curves look like typical
3D SISF curves describing unhindered motion in a ho-
mogeneous isotropic fluid except that the diffusive tail
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FIG. 12. (a)-(f) Self-intermediate scattering function

F
∥
c (k⃗o, t) given by Eq. (12) for three facets and 0.1 ≤ εLS ≤

1.0 in increments of 0.1 for trajectories of particles ten or
more of which remain within contact layer throughout the
measurement interval. Wave number coordinates of the recip-
rocal lattice vectors corresponding to the maxima of the 2D
static in-plane structure factor are listed in Table III. Verti-
cal lines through icons signify standard deviation (not visible
when smaller than icon size).

never decays to zero. The non-zero asymptotic value of
the SISF below the structural transition implies persis-
tent autocorrelation while undergoing diffusion caused by
influence of the periodic corrugation of the crystal sur-
face potential. Above the transition, the SISF curves in
Fig. 12 (b) and (e) instead reveal a rather flat distinctive
plateau, indicative of strong caged motion. In comparing
motion against the three facets, we see that for the same
value of εLS , the [011] facet induces the strongest degree
of caging but surprisingly, the shortest period of confine-
ment. The latter confirms faster escape of particles from

the contact layer to the subsequent liquid layer.

4. Dependence of non-ergodicity parameter on crystal facet,
L/S interaction energy and temperature

The dependence of the terminal time t∗ and non-
ergodicity parameter value F ∗ as εLS increases is shown
in Fig. 13. When combined with the findings in Fig. 10,
the results in Fig. 13(a) highlight that above the value
εLS relating to the structural transition for the [011] case,
particles spend the least amount of time undergoing 2D
caged motion than similarly parameterized motion for
contact layers against the [001] or [111] facet. The caging
residence time is much therefore shorter despite that the
caging is stronger as quantified by the value F ∗ in Fig.
13(b). Below the structural transition, for the same value
εLS , liquid particles against the [011] facet spend simi-
lar or slightly longer times undergoing sub-diffusive or
weakly caged motion as particles against the other two
facets. However, for similar contact layer temperature
and identical value εLS , the [011] case always incurs the
largest value of F ∗. As described in Section IIC, data
collection was terminated at time t∗ once there were fewer
than 10 particles that had never left the contact layer. A
different criterion for minimum residency will of course
yield different values of t∗ and F ∗ but the trends de-
scribed should still distinguish the [011] facet from the
other two.

IV. DISCUSSION

The early NEMD studies cited in the Introduction as
well as more recent continuum [64–66] and particle based
simulations [21, 22, 29–31, 33, 67–72] all confirm that an
enhancement in L/S wettability or increase in liquid pres-
sure generally leads to a reduction in the thermal bound-
ary resistance and thermal slip length at a L/S interface.
This correspondence has been attributed to the higher
resulting contact density from enhanced liquid on solid
adsorption/absorption and/or a smaller depletion layer.
Intuitively, it seems reasonable that a higher contact den-
sity will promote more frequent collisions between liquid
and solid particles thereby enhancing the rate at which
thermal energy is transferred across the interface. While
the results in Fig. 5(a) confirm that all things equal,
larger values of εLS lead to smaller thermal slip lengths,
the data in Fig. 5(b) highlight a contradiction of sorts
with this prevailing view. Specifically, for the same value
εLS , the [011] facet supports the highest thermal flux yet
maintains the smallest contact density of all three facets
tested. From this demonstration alone, it is clear that a
single variable like ρc cannot reliably nor uniquely predict
the relative magnitude in thermal slip length. This coun-
terexample motivated the current study in which various
metrics relating to the structural and dynamic properties
of particle motion in the contact layer are used to piece
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FIG. 13. (a) Terminal time t∗ and (b) corresponding value
of the self-intermediate scattering function F ∗ extracted from
data in Fig. 12 for the hotter and colder contact layer for three
facets and 0.1 ≤ εLS ≤ 1.0 in increments of 0.1. Vertical
lines through icons represent standard deviation; connecting
segments are a guide to the eye.

together a more accurate picture of how thermal energy
is best transferred across the interfacial region. By con-
fining the liquid layer between two solids, each oriented
identically along one of three facets of an FCC crystal, it
becomes clearer how the different facet symmetry, width
and depth of the periodic crystal surface potential and lo-
cal temperature influences the configuration and motion
of particles in the contact layer. The two L/S interfaces,
one at the hotter and colder side of the liquid layer, act
essentially as phonon filters which regulate the maximum
rate of heat transfer across the entire system. Quantifica-
tion of particle trajectories by mean square displacement
and the self-intermediate scattering function reveals that
a smaller thermal slip length is strongly correlated with
more rapid particle escape from 2D caged motion in the
contact layer. And the stronger the caging effect, the
smaller the thermal slip length. As has been noted for
supercooled liquids and so-called structural glasses [73],
it is highly likely that in our system too, as a particle es-
capes one cage and gets trapped by a next, it does not do

so alone since its displacement causes coherent motion of
neighboring particles as well. The type of 2D caged mo-
tion described in this work likely pertains more broadly
to the coherent motion of clusters of neighboring par-
ticles and therefore sub-diffusive behavior characterized
by a much larger effective mass. Besides the retarding
influence of the periodic crystal surface potential, this ef-
fect too may help explain the reduction in the exponent
values γL in Table IX.
We end this discussion with an explanation for why

our findings stand in sharp contrast to the main con-
clusion of a previous study which remains highly cited
to this day [74]. The authors of that work reported no
discernible effect on thermal transfer across the L/S in-
terface which could be traced to the degree of in-plane
liquid ordering for a net thermal gradient in the direction
parallel or perpendicular to the contact layer. This con-
clusion was based on the observation that the thermal
distribution, thermal gradient and thermal conductivity
of the liquid layer remained unchanged despite varying
the liquid layer thickness and increasing εLS from 0.2 to
3.3. Closer inspection of the data in that study suggests
three important factors that were overlooked. First, the
value εLS = 3.3 selected to represent a strongly wetting
liquid was so large as to induce epitaxial locking of the
contact layer to the solid surface for all cases tested. This
problem is evident in Fig. 3 of Ref. [74] showing perfect
registry between the particles in the contact layer and the
pattern set by the periodic surface potential describing
the [100] facet of an FCC crystal. This behavior would
not only significantly repress 2D diffusive motion within
the contact layer by would also create a solid-like inter-
stitial layer. Secondly, the density and temperature of
the liquid layer were chosen to be too close to the triple
point [36] thereby also incurring formation of solid-like
domains within the contact layer. Thirdly, the thickness
of the solid layers abutting the liquid layer were reported
to be 10× the edge length of the FCC unit cell. The
thickness of the solid layers was therefore less than the
phonon mean free path [22, 38, 44], which would restrict
the set of vibrational frequencies able to couple to the
liquid layer.

V. CONCLUSION

The results of this study reveal that a reduction in
thermal slip length at a L/S interface is highly correlated
with two mechanisms acting in concert. The first is based
on strong commensurability between the long range spa-
tial ordering of liquid particles in the contact layer and
the spatial pattern describing the periodic surface poten-
tial of the nearby crystalline solid. Strong registration
between these two patterns establishes higher and more
strongly correlated energy barriers the induce a signifi-
cant slowdown in the 2D mean square displacement fol-
lowing the ballistic regime leading to a new type of 2D
caged motion that differs from conventional glassy behav-
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ior. Results of the self-intermediate scattering function
confirm that smaller thermal slip lengths correlate posi-
tively with larger values of the non-ergodicity parameter.
Surprisingly, however, larger values of this parameter cor-
respond to shorter - not longer - caging times. It appears
then that the stronger the 2D caging effect, the more
rapidly caged particles escape into the third dimension
so to speak, and in so doing, tunnel between liquid lay-
ers to shuttle heat more efficiently toward cooler regions.
The fundamental nature of this study suggests broader
applicability with a new paradigm for the design of L/S
interfaces to maximize thermal transport.
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TABLE VII. Results of NEMD simulations described in the text for Tsource = 1.6 and Tsink = 1.0 showing the influence of
FCC facet orientation and L/S interaction energy εLS on the thermal flux Jz [Eq. (8)] and magnitude of the thermal gradient
|dT/dz| and thermal conductivity k [Eq. (2)] within the bulk solid and liquid layers away from the L/S interface. The numerical
values in each column are to be multiplied by the multiplicative factor appearing in the column heading. Thermal gradient
values were extracted from least squares fits across the linear portion of the thermal profile within each layer. Numbers in
parentheses are standard deviation values. All values are reported in reduced units.

Liquid layer Hotter solid layer Colder solid layer

Facet εLS Jz × 10−2 |dT/dz| × 10−2 k |dT/dz| × 10−4 k × 102 |dT/dz| × 10−4 k × 102

[001] 0.1 6.861(0.067) 0.903(0.029) 7.607(0.257) 3.400(1.630) 2.352(0.911) 2.800(1.180) 3.087(1.949)

[001] 0.2 7.297(0.089) 0.983(0.027) 7.429(0.240) 3.990(2.180) 3.844(5.758) 3.370(0.940) 2.370(0.846)

[001] 0.3 8.045(0.364) 1.042(0.030) 7.725(0.422) 4.350(2.170) 3.315(3.577) 3.120(1.670) 3.372(1.830)

[001] 0.4 8.280(0.084) 1.102(0.028) 7.520(0.208) 5.110(1.930) 1.886(0.831) 3.640(1.460) 2.784(1.571)

[001] 0.5 8.661(0.088) 1.161(0.017) 7.464(0.112) 4.590(1.860) 2.840(2.848) 4.040(1.100) 2.379(0.991)

[001] 0.6 8.609(0.576) 1.191(0.026) 7.230(0.485) 5.050(1.360) 1.825(0.513) 3.730(1.020) 2.461(0.667)

[001] 0.7 9.297(0.095) 1.227(0.022) 7.581(0.088) 6.750(1.810) 1.478(0.429) 4.090(0.840) 2.379(0.601)

[001] 0.8 9.580(0.327) 1.294(0.020) 7.408(0.308) 5.250(1.670) 2.111(1.107) 3.470(1.320) 4.277(5.245)

[001] 0.9 9.702(0.035) 1.316(0.027) 7.375(0.145) 5.940(1.730) 1.775(0.562) 3.890(1.250) 2.755(0.937)

[001] 1.0 9.924(0.375) 1.355(0.025) 7.325(0.251) 5.340(2.210) 2.126(0.758) 3.930(0.930) 2.663(0.686)

[011] 0.1 7.677(0.103) 1.043(0.018) 7.366(0.149) 4.110(1.790) 4.934(9.810) 3.380(0.870) 2.410(0.603)

[011] 0.2 8.355(0.196) 1.098(0.020) 7.615(0.272) 4.770(1.550) 1.949(0.721) 2.980(1.080) 3.243(1.442)

[011] 0.3 8.927(0.053) 1.166(0.025) 7.658(0.150) 5.090(1.150) 1.832(0.393) 2.870(1.380) 3.907(2.281)

[011] 0.4 9.003(0.404) 1.222(0.010) 7.370(0.343) 5.520(1.840) 1.792(0.573) 4.080(0.890) 2.324(0.601)

[011] 0.5 9.566(0.196) 1.279(0.024) 7.484(0.228) 5.790(1.740) 1.802(0.584) 3.250(1.120) 3.402(1.528)

[011] 0.6 10.211(0.638) 1.317(0.017) 7.754(0.425) 5.810(1.440) 1.874(0.543) 3.880(1.080) 2.828(0.803)

[011] 0.7 10.044(0.101) 1.383(0.024) 7.264(0.130) 4.960(1.000) 2.125(0.567) 3.400(1.380) 3.767(2.389)

[011] 0.8 10.303(0.090) 1.406(0.037) 7.333(0.170) 5.010(2.310) 2.674(1.820) 3.230(1.310) 3.878(1.989)

[011] 0.9 10.667(0.120) 1.433(0.026) 7.444(0.180) 5.520(1.320) 2.026(0.437) 3.790(0.990) 3.045(1.003)

[011] 1.0 10.629(0.325) 1.464(0.025) 7.265(0.309) 5.400(1.860) 2.200(0.800) 3.540(0.880) 3.192(0.862)

[111] 0.1 6.975(0.230) 0.914(0.033) 7.639(0.371) 4.010(1.330) 1.985(0.880) 3.270(0.880) 2.328(0.880)

[111] 0.2 7.429(0.148) 0.993(0.031) 7.485(0.138) 3.740(1.650) 2.791(2.486) 3.110(1.040) 2.800(1.481)

[111] 0.3 8.017(0.397) 1.059(0.026) 7.572(0.391) 4.190(1.730) 2.318(1.146) 2.830(1.050) 3.316(1.586)

[111] 0.4 8.477(0.189) 1.131(0.014) 7.493(0.131) 4.440(1.460) 2.201(1.063) 3.440(1.160) 2.765(1.102)

[111] 0.5 8.909(0.097) 1.179(0.024) 7.559(0.121) 5.340(2.170) 2.010(0.990) 3.440(0.880) 2.763(0.763)

[111] 0.6 9.318(0.061) 1.231(0.029) 7.574(0.185) 5.830(0.930) 1.638(0.285) 2.870(1.720) 8.488(13.281)

[111] 0.7 9.608(0.128) 1.280(0.020) 7.508(0.179) 5.150(1.380) 2.021(0.671) 3.400(1.130) 3.216(1.395)

[111] 0.8 10.003(0.115) 1.335(0.018) 7.496(0.144) 4.830(1.540) 2.289(0.799) 3.530(1.300) 3.577(2.368)

[111] 0.9 10.207(0.062) 1.362(0.020) 7.495(0.097) 5.660(1.440) 1.918(0.525) 3.710(1.680) 3.493(2.071)

[111] 1.0 10.394(0.061) 1.403(0.017) 7.408(0.113) 5.150(2.640) 3.526(4.032) 3.710(1.350) 3.385(1.891)
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