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MECHANISMS WHICH CAN ACCELERATE THE GROWTH OF PHASE
SEPARATING DOMAINS NEAR A WALL

SANDRA M. TROIAN
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ABSTRACT

Though the dynamics of bulk phase separation during spinodal decomposition is fairly well
understood nowadays, recent experiments have shown that the same process occuring near a wall
introduces some surprisingly fast domain growth kineties. Studies of both polymer mixtures and

- simple binary fluids at critical composition quenched into the unstable regime reveal the presence
of a fast mode associated with domains coarsening at the well. The scattering data indicates
that while the bulk domains grow in time as £1/3, as dictated by usual diffusion driven dynamies,
the surface domains coarsen with exponents ranging from about 1.1 to 1.5 depending on the
quench depth. We construct a model in which the average size of domains in a binary mixture
undergoing spinodal decomposition near & wall can achieve growth exponents much larger than
1/3. The accelerated growth is associated with the domains of the non-wetting phase coarsening
anisotropically against a wall coated with the wetting phase.The faster growth evolves from
coupling Lifshitz-Slyozov type coarsening for critical volume fractions, modified to include the
geometric constraint of growth near a wall, the process of domain coalescence. Included are some
predictions for experimental tests of these ideas.

INTRODUCTION

Recent experiments on phase separation in different types of binary mixtures undergoing
spinodal decomposition near a wall reveal surprisingly fast and as yet unexplained domain growth.
In studies of the polymer blend polyisoprene-poly(ethylene-propylene) at critical composition
confined to a thin cell and quenched into the unstable regime [1, 2], the growth of domains in the
bulk of size Ly were found to coarsen with the usual diffusion driven dynamics leading to Lg ~
t1/3, The domains growing parallel to the surfaces, however, coarsened at the accelerated rate of
Ls ~ t3/2, More recent experiments on the simpler fluid mixture of guaiacol and glycerine/water
[3] have shown that the exponent associated with Ls s quench dependent with a range of about
1.1 to 1.5. Though the mechanism reponsible for this accelerated surface growth appears generic
to binary mixtures in general, there has been no theoretical framework with which to interpret
these results.

It remains an open experimental question as to whether the fast surface growth is associated
with the non-wetting or the wetting phase. For the kinetics to achieve such large growth exponents
through a single mechanism controlled mainly by diffusion is difficult to imagine. We instead
propose a modelin which the fast surface growth stems from the coupling of two distinct processes.
The first involves curvature driven Lifshitz-Slyozov (LS) coarsening in the presence of a wall
and the second describes coalescence of three dimensional (3D} domains growing against a two-
dimensional (2D) surface. Due to the constraint of growth near a wall, we argue that individual
domains growing by an LS type mechanism can exhibit power law exponents ranging from 1/3
to 1/2. We then indicate how coalescence of domains can significantly increase this exponent.
In particular, if the individual non-wetting domains near a wall coarsen as L ~ 1%, then the
process of coalescence can cause the average characteristic size of domains to grow as L ~ t3°,
Predictions based on this coupled growth mechanism are calcilated below and can easily be
tested experimentally. We have also reviewed one of the earliest experiments [4] on & binary fluid
mixture near the consolute critical point used to probe the connection between the growth of &
wetting layer against a wall and bulk phase separation. Contrary to previous reports, we find
that the exponents measured most recently [1, 2, 3] and those measured in the earlier works [4]
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may all be consistent.

EXPERIMENTAL RESULTS

The experiments cited sbove, designed to investigate the effect of a nearby surface on the
coarsening process, have uncovered the presence of two growth modes. The scattered intensities
versus wavevector, g, reveal the evolution of two distinct peaks, differing in amplitude by an order
of magnitude. Tracking these two peak positions as & function of time and intensity has uncovered
a slow bulk mode evolving as gz ~ ¢~!/% and a fast surface mode evolving as gs ~ ¢~ with 1.1 €
B < 1.5. The model we construct below proposes two distinet but coupled mechanisms which can
explain this quench dependent spectrum of exponents. Upon inspecting the experimental data,
however, we note that the exponent associated with the slow mode shown in Fig. 2 of Ref. [1]
and Fig. 13 of Ref. [2] does not scale neatly with a slope of -1/3 and appears also to depend
on quench depth AT. The shallowest quenches show the larger absolute slope approaching 1/3
while the deeper quenches show progressively smaller slopes [5]. Although the quench depth
dependence may be an artifact of the curve-fitting routines used to separate the two signals, this
raises the question of whether the bulk of these systems has yet reached the later stages of phase
separation since it is known that for finite times this effective exponent is less than 1/3 [6]. In
what follows we assume that the exponent associated with the growth of the bulk domains is at

most 1/3 but perhaps even smaller.

COARSENING OF BINARY MIXTURES AT CRITICAL VOLUME FRACTION
NEAR A WALL

We review the origin of the power law Ly ~ t!/3 for domains in the bulk. Lifshitz and Slyozov
(LS) [8] first described the diffusion driven growth of isolated droplets coarsening in & matrix of
a second continuous phase and showed that the average droplet radius scales asymptotically as
R ~ 13, Voorhees and Glicksman [9] later numerically solved the multidroplet diffusion problem
for volume fractions of the coarsening phase up to 95%. Their conclusion was that the 11/ kinetics
is still preserved at late times for all volume fractions. The usual LS equation holds strictly for

" vanishingly small volume fractions of the minority phase and cannot be used to study systems

above the percolation threshold. In the case where the volumes of the two demixing phases are
comparable and the morphology resembles interconnected domains, Huse [6] has shown that the
typical size of the growing domains still scales as {173 gt long times. Renormalization group
arguments confirm this result for either critical or off-critical quenches [10].

Model Geometry

We draw attention to Fig.[1] where we have sketched the spinodal process for the case where
the fast surface signal derives from the growth of the non-wetting domains near a wall. (In a
separate work [11] we are investigating the alternative possibility where the signal derives from
the growth of the wetting phase against the substrate.) The system is phase separating into an
A phase (rich in A component) and a B phase (rich in B component) where the B component
preferentially wets the wall. There exists an enriched B layer at the wall and a corresponding
depletion of the A component in the vicinity of the wall. The tendency toward surface wetting and
subsequent layering of the wetting and non-wetting phases has been seen in polymeric mixtures
[12). Since the wetting layer is depleted in the A component, the domains of A will be slowed
down in the direction perpendicular to the wall and instead tend to grow laterally. There can
also be a dynamic effect enhancing growth in the lateral direction within a thickness of the order
of the wetting layer away from the wall since there can exist an enriched layer of the A phase
(due to expulsion) which has not yet equilibrated with the bulk concentration . The A domains
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which originelly grew isotropically in the bulk are now confined to grow enisotropically along the
wall. Such biesed growth will create elongated domains of the A phase growing on top of the B
rich wetting layer. The A/B interfaces which are growing in a direction parallel to the wall will
tend to develop higher curvature as a result. We denote by Rs the average radius of curvature
for interfaces A/B adjacent to the wetting layer and by Rp the average radius of curvature for
interfaces closer to the bulk where Rs <« Rp. This description of anisotropic growth parallels
closely what has been seen in the optical mierographs taken by Guenoun et al [4] although the
bulk liquid in their system has already evolved to the late stages where coarsening occurs by
capillary flow [13].

Figure 1: Schematic diagram for the anisotropic growth and incipient coalescence of non-wetting
A phase domains during spinodal decomposition. The radii of curvature, Rg and Rg, denote the
length scales appropriate to the bulk and surface interface growth, respectively

Lifshitz-Slyozov Argument Modified to Critical Volume Fractions In Bulk Systems

Huse's argument for the growth of diffusion-limited, interconnected domains relates the veloe-
ity of an interface to the gradient in the local curvature. The system is assumed to be near local
equilibrium on length scales small compared to the radius of curvature. The difference between
the local and critical concentration of one of the diffusing species defines the order parameter,
N, whose growth is driven by the local gradient in the chemical potential difference, ;s between
the two species. For a portion of a curved interface to be in local equilibrium, the Laplace pres-
sure, o/ Rp(t) (where o is the interfacial surface tension) must balance the pressure, uN, due to
the local driving field. The local field, g, is therefore of order o/[NRp(t)] and, for an isotropic
system with only one length scale, the local field gradient will be of order o/[NR?g(t)]. The
interfaces move with a velocity dRg(t)/dt in response to the local field gradients which induce a
particle flux, j, proportional to DVyt/(84/8N)rp where D is the mutual diffusion constant and
(8/®N)r is the osmotic susceptibility. The domains are then expected to coarsen at the rate

dRp(t) -
di Rp*(t)’

(1

This curvature driven growth in isotropic systems Jeads to the growth law Rp(t) ~ t1/3 [14].
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Lifshitz-Slyzov Argument Modified to Critical Volume Fractions in Systems Near a Wall

Suppose that the A/B interfaces adjacent to the wetting layer are more highly curved than
in the bulk because of the mechanics leading to biased lateral growth. There will then be two
length sceles to consider, nemely the two radii of curvature, Rs and Rp, where Rs < Rp. The
local chemical potential field near the wall scales as o/N Rs(t) but variations in this field occur
over much longer distances, Rg, since gradients sample regions on order of the domain size. The
lateral growth of domains near the surface should then scale as

dRs(t) a
&~ WO @

If we assume that on the time scale appropriate to the growth of the smaller scale features
represented by Rg, the larger length scale Rp is growing slowly and, by comparison, is effectively
frozen, then Eqn. (2) gives the power law growth Rg(t) ~ t'/2 correct to order o/Rp(t). This
different scaling law is simply a result of the geometric observation that during phase separation,
the less wetting A phase will tend to form more elongated domains pressed up against the wetting
B phase and this enhanced curvature will speed up the coarsening process. As we alluded earlier,
the exponent measured for the slow bulk mode shown in Fig. 2 of Ref. 1 corresponding to Rg
seems to be less than 1/3 except for the shallowest quench. If significant, this observation satisfies
even better the condition that Rp is more slowly varying than Rg. It is not clear how one can
experimentally measure this different power law near the surface. The scattering intensity is
proportional to the scattering volume and in the systems so far studied, the surface to volume
ratio is small which would make it very difficult to detect a slightly different power law near the
surface. The process of coalescence to be described below may be an indirect measurement of
this different power law near the surface.

The argument leading to Rs(t) ~ t'/2 requires that there be a separation in length scales in
the system. How will this separation in scales be affected by the quench depth? We expect that
for shallow quenches, since the phase separation process proceeds more slowly and the interfacial
tension is lower, the surface curvature will not be as fully developed and the system should behave
more isotropically, leading to a growth exponent closer to 1/3. On the other hand, for the deepest
quenches, the phase separation occurs very quickly, the interfacial tension is higher and the A/B
interfaces near the wall should be well developed and highly curved leading to an exponent for
interface growth closer to 1/2. Monte Carlo simulations of the square lattice Ising model with a
wall potential attracting one the phases can be useful in settling this issue of whether the bulk
interface growth exponent of 1/3 can be increased to 1/2 in the case of the growth of non-wetting
domains coarsening against a wetting layer.

EFFECT OF COALESCENCE ON DOMAIN GROWTH EXPONENT

Given that the individual non-wetting domain growth exponent is expected to scale as Rg(t) ~
™ where 1/3 < & < 1/2, we now indicate how domain coalescence near the wall will increase
this exponent by a factor of three. The pheonomenom of coalescence and the consequent increase
in the growth exponent associated with the average domain size has previously been studied
for the case of droplet growth during heterogeneous vapor condensation onto a partially wetting
surface [15, 16). Scaling analysis of this system reveals that irrespective of the particular transport
mechanism governing the growth of individual droplets, the average drop radius grows with an
exponent three times as large as the individual growth radius. The relationship is strictly a
consequence of the geometrical constraint imposed by having & 3D droplet growing on a 2D
substrate.

The condensation problem involves liquid droplets bounded on one side by a solid and on the
other by a supersaturated vapor. The system of interest to us involves instead the growth of two
viscous interconnected structures. Coalescence of two A domains will involve squeezing fluid of
phase B from the region inbetween the approaching domains. We expect this process to lead to a
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slightly slower growth law than we predict below. Caleulations paralleling those of Siggia [13] for
hydrodynamic interactions like droplet deformation and ensuing internal circulations which can
occur during coalescence can be performed but previous investigation of these retardation effects
indicate that the hard sphere results capture the essential physics. Also, the convoluted domains
undergoing coalescence do not resemble spherical droplets unless the high curvature near the base
of a domain causes the elongated part to pinch off and detach from the “tube” extending into the
bulk. The derivation below holds nonethless since we are only interested in the temporal power
laws derived from the similarity solution and all geometrical factors can be ignored.

We consider domains of the A phase with preferential growth parallel to the wall whose

surfaces ever so often come into contact to merge and form a single larger domain. During this |

process, the average domaln size increases while the number of domains decreases. We define the
surface domain size distribution function, ¥(R(),t) to be the number density of domains of size
R(t) of phase A coarsening ngainst the wetting loyer of phase B. The domains parameterized by
R(t) need not have a circular cross-section but it is necessary that the domains retain a fixed
three-dimensional shape during growth such that the size is defined by only one parameter. Two
domains are assumed to fuse instantaneously upon contact since the time scele, Tfusion ~ nR/0,
is much shorter than the time scale for growth by diffusion 74 ffusion ~ R2/D, where 5 is the
viscosity, D the cooperative diffusion constant and o the interfacial tension [17]. In the simplest
model, we consider only binary collisions with no domain correlations. Let P(R,, Rs) represent
the probability for coalescence per unit area per unit time of two domains of size Ry and Ry. The
probability distribution function obeys a rate equation of the form

@ = _31.!!5_}_2_ 1 3 i
3t Ra T3 f P(Ry, R)6[(R1® + R2®)s — RldR,dR;
- [ PRy, Ryams. ®

where the first term represents a change in 1 due to individual domain growth, the second (gain)
term for coalescences producing a domain of size R, and the third (loss) term for coalescence with a
domain of size R. The probability of coalescence is defined as P(Ry, Ry) = A(Ry, Ro)y(R1)Y(Ry)
where the collision kernel, A, represents the number of encounters per unit area per unit time. We
assume the domains are immobile and collisions are strictly caused by the increased surface area
due to individual domain growth. For coalescence in a plane, we imagine a “circle” of radius r
centered about a domain of size Ry such that any other domain entering this region of coagulation

. will be instantly bonded to the first. The collision probability is therefore directly proportional
to the perimeter associated with the distance of closest approach r =~ R; + Ra, as well as the
flux of material crossing this perimeter, which for binary collisions is proportional to the relative
velocity of approach d(R, + Rs)/dt. This leads to

ARy, R) = (Ry + o) 5 (R + ) (4

where for simplicity all geometrical factors are eliminated.
We introduce the n-th moment of the distribution function:

Sn= [ Rou(R,1dR ®)

such that the total number of domains against the substrate is S,, the average domain size is
51/8,, the total area is proportional to Sp and the total volume to S3. Recognizing that the
collision integral is symmetric, we seek a similarity solution to the equation for dS,/dt of the

form
W(R(E), 1) = t*%a(2) ()

where the dimensionless variable z = t~7R(t). The exponent - reflects growth through coales-
cence 50 that by definition, the average domain size < R(t) > scales as t=7. The self similar
solution requires that § = 3-y.
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The instantaneous coalescences are volume conserving and therefore the only increase in _total
volume of the A domains occurs through diffusion. We showed previously that the individual

growth is governed by the power law R ~ {*. If the domains grow isotropically, so that the

volume of the domains scales as ¢, then

[ R o, 0dRE ~ =, ™ |

which gives the relation 4 = 3a. This relationship; which is independent of the particular
mechanism governing individual growth, states that the process of caalescence_leads tc? & power
law for the average domain size which is three times the exponent associated with the individual

growth law. In our case, the individual domains are expected to grow as i* for 1/3<a<1/2 |

while the average domain growth including coalescence should therefore scale as .ta". Returning
to our earlier notation, this gives an exponent, §, for the surface growth including coalescence
with values ranging between 1 and 1.5, with the higher exponents associated with the deeper
quenches. This range of values for the surface growth has recently been seen (3.

PREDICTIONS AND CONCLUSION

Based on this model, we predict the following behavior. The zeroth moment defines the
number of non-wetting A domains, Na(t), growing along the 2D surface. Qur scaling predicts
that NA(L) ~ £~5% so that for shallow quenches we expect ¢2 while for deeper quenches we expect
t—3. Our original scaling ansatz assumes that the coarsening morpho!ogy is self sllmx.lar which
implies that the surface area coverage (appropriately scaled by Rs) is ccms%ant, which seems
verified experimentally. Our interpretation also gives rise to domain shapes w;th_large length to
height aspect ratios where the growth appears more and more 2D—_like. According to dynamic
scaling, these 2D structures would give Inmaz ~ Qmaz"2 85 seen expenmenta!]y for 1.!1e fast m_lrface
signal. Finally, the model applies to binary mixtures in general, be they simple binary fluids or

mixtures.
pOh:I'n}llzrappeamnue of the large exponent reflecting surface growth is.in disag‘reement, with the
exponent measured in another observation [4] of phase separating domains growing near a surface.
This discrepancy has been attributed [1] to the fact that earlier experiments were conductesl-at
dimensionless times (i.e. time is rescaled by the correlation lengf.h_ derived from llnt::al' stability
analysis and the effective diffusion coristant) greatet than 1000, while the later.experiments were

- conducted for times between 50 and 1000. After reviewing the data by Guenoun et al we sug-

gest another possible explanation for this discrepancy. Fig. 3 o_f Ref. [4) r(fpresents the' scaled
wavenumber, K3, as a function of dimensionless time corresponding to l:hed{stance betwgen the
centers of the domains constituting the less wetting phase and K corresponding to the thickness
of the macroscopic wetting layer against the quartz substrate. The measured points, r}ande frf)m
hand measurements off of video images, gave K ~ t®84%015 and K2 ~ (0562018 Oyr inspection
of the data reveals some systematic oscillation in the curves.

There appears to exist two different power laws for each curve, one assaci.nted with a fast
dropoff in the wavevector (presumably reflecting coalescence) and the other with a much more
slowly varying growth (presumably reflecting individual growth between coalescence events). For
the different quench depths shown, we find we can easily fit a line with a slope close to -3/2 over
the portions of the data that show the sharp dropoff. There is nf)t enough data. presented to f:t
the flatter portions of the two curves. The curve for K7 follows nicely the behfwmr shown lp K3,
It appears that each time there is a coalescence event, there is a corresponding increase in the
thickness of the wetting layer. This behavior is to be expected since a coalescence e.vent must
involve equeezing fluid out from inbetween the non-wetting domains, and some of this expelled
fluid must go into increasing the thickness of the wetting layer. We suggest that with more
available data, the average slope would have been weighted more toward the exponer{t assc.)cmr.ed
with coalescence, leading to a power much higher than 0.64, bringing the value in line with the

more recent experiments [18].



Though the coupled mechanism proposed above seems to offer a consistent explanation for the
range of quench dependent growth exponents measured experimentally, we have been exploring
another model strictly based on growth by diffusion alone which also seems to be giving expo-
nents larger than one [11]. As first published, Wiltzius and Cumming seemed to suggest that the
fast growth signal is confined to a planar region whose thickness is on the order of 10 microns.
Fig. 3 of Ref. [1] in which the peak position is plotted against the maximum intensity seems to
suggest that the fast signal is associated with a three dimensional structure of constant thick-
ness.The exponents one derives depend somewhat on the multiparameter fit used to deconvolute
the bulk and surface signal and therefore, the separation in dimensions as plotted in Fig. 3 may
be misleading. Nevertheless, it is an intriguing possibility.

To investigate the consequences of such two-dimensional growth, we havénodelled the growth
of an isolaled wetting domain by considering an absorbing disk of constant thickness toward
which species diffuse from a supersaturated liquid. Qur analytic and numerical solutions show
that when the concentration field can equilibrate faster than the dise grows laterally, the radius
of the disc increases linearly in time. This is strictly a reflection of the geometric constraint
restricting growth in the vertical direction (i.e. the thickness of the disc). At later times, the
fully time dependent solution reveals that the concentration field cannot adjust as quickly as the
disc grows, produeing even faster radial growth with exponents in excess of one. Further work is
needed to decide whether this conceptually simpler model is able to capture the essential physies
as measured experimentally. In either case, the fact that a nearby substrate can enhance domain
growth to such a degree is a problem not before considered and one in which experiments can

help guide modelling efforts.
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