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PHENOMENOLOGICAL THEORIES OF QUASICRYSTAL FORMATION

S.M. TROIAN
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Résumé,— Nous discutons la classe de théories de champ moyen récemment
proposées pour expliquer la formation et stabilite des quasicristaux.

Abstract - We survey the class of mean field theories which have recently
been proposed to explain the formation and stability of quasicrystals.

I - TINTRODUCTION

Just over two years ago a small revolution occurred in the condensed matter
community with the announcement by Shechtman et al. /1/ reporting the discovery

of an aluminum-transition metal alloy with transmission electron microscopy dif-
fractograms exhibiting spots as sharp and intense as those of crystals but with
icosahedral point grdup symmetry. A new structural concept has become necessary to
account for these microstructures which are neither crystalline nor amorphous, as
clearly manifested by their electron diffraction patterns. These substances pose
problems for our tidy classification of structures, though efforts during the past
year aimed at elucidating their structural and stability properties seem to indicate
that these rapidly solidified alloys are composed of ordered multipalyhedral struc~
tures forming a new "intermediate" state of matter inbetween glassy substances and
periodic crystalline materials.

N number of theoretical models proposed since the discovery of quasicrystals
are successfully providing a basis within which to understand (a) what arrangement
of atoms is required to produce the observed quasicrystalline diffraction patterns
and (b) why it is that the atoms should choose to assume such icosahedrally sym-
metric configurations in preference to the conventional periodic crystalline forms.
Approaches to these fundamental questions divide into two categories. There has been
developed a geometrical approach, giving systematic prescriptions for the construc-
tion of quasicrystalline lattices with icosahedral symmetry, and a phenomenological
approach, designed to find whether any of the conventional elementary models of
crystal formation might not contain metastable or even stable guasicrystalline so~
lutions that had hitherto been overlooked because of the almost universal expectation
that positional ordering must be crystalline. Since most of the talks presented at
this conference have addressed the first approach in great detail, I will be
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limiting my presentation to a discussion of the energetics of formation and the
stability properties of these strange and wonderful alloys. We will mainly be exam-
ining the class of mean field theories based on the conventional Landau /2/ theory of
crystal solidification and will ask whether quasicrystals can emerge naturally from
the kind of simple Landau theories that have been used for so long to predict the
possible structures of ordinary crystals.

Recall that the Landau theory of crystal formation is a hydrodynamic description
of a substance in the vicinity of a phase transition and as such, details of the
substance at the microscopic level become wholly irrelevant. In addition, because it
is phenomenological in character, it evades the central difficulty of statistical
mechanics, which is to calculate the partition function given the Hamiltonian of
the system. Since there is still no microsconic theory for quasicrystal formation,
the two points just mentioned make Landau theories an especially appealing and use-
ful tool for understanding the energetics involved in quasicrystalline ordering. In
particular, we will be using this mean field theory to determine whether a structure
with icosahedral symmetry can be stabilized below the liquid to solid transition
temperature.

A Landau theory of phase transitions consists of two main ingredients. One must
first construct an order parameter, which will provide the local, macroscopic des-
cription of the system. Secondly one assumes that for temperatures near the transition
temperature the equilibrium properties can be calculated from a function of the
order parameter only - this function can simply be regarded as a generalization of
the Gibbs free energy to situations of non-equilibrium. The minimum of this free
energy functional ceorresponds to the actual Gibbs free energy of the system. Through-
out this review it is important to keep in mind that because of the approximations
inherent in such an approach, the aim of such theorjes (with the possible exception
of the Sachdev and Nelson model discussed below) is not to give an accurate quanti-

tative micfoscopié description of quasicrystalline ordering, but instead to demonstrate
that contrary to earlier prejudice thereis nothing peculiar about states with long-
range icosahedral ordering. The aim of all.the models to be discussed is to show

that quasicrystalline states can compete successfully with conventional crystalline
states even in the most elementary phenomenological theories of solidification.

11 - CONVENTIONAL LANDAU THEORY OF CRYSTAL FORMATION

The possible non-uniform structures that can form from the isotropic fluid are
determined in Landau theory by minimizing the free energy density f, which is taken
to be a function of ¥{r), the deviation of the atomic density p(r) from its equili-

brium value Py The free energy density f has two competing terms: a gradient term
fgrad’ which represents the effect of non-local interactions in the Tiquid tending
to favor a non-uniform density, and a bulk term fbu]k’ which represents the prefer-
erice for local thermodynamic equilibrium at a uniform density. The two contributions

to the free energy density have the general forms:
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forad = v IIdBrdar'w(r)K(r-r’)w(r') + o

Fouk =V r(ty?r)-by3(p) + allr) + .. . (1)

If the deviation ¥ of the density from non-uniformity is small (as it will be if the
transition is only weakly first order) then higher order terms in the expansions (1)
can be ignored. One often (but not always - see below) truncates the non-local gradi-
ent free energy at second order in ¥, retaining the fourth order terms necessary for
thermodynamic stability only in the local bulk free energy. Note that the bulk terms
can also be cast in the form of gradient terms by appropriate choice of delta-function
kernels K; the real content of the separation (1) lies in the assumption that all
terms higher than second order in ¥ can be taken to be local.

The simplest version of such a theory was put forth by Alexander and McTague /3/
several years ago. Their analysis applies in the limit in which the dominant term in
the free energy is the quadratic gradient free energy. Since this has the k-space
form:

Iy K(k)w*(k)e(k) , (2)

it follows that the most favorable structures will be superpositions of a set of wave
vectors that all lie on a single spherical shell of radius ko, where k0 is the mag=
nitude of the wave-vector that minimizes K(K). If we combine all the gquadratic free
energy terms, defining

T=t+ Kk ), (3)
then the quadratic part of the free energy in this single shell 1imit is just
£ ot w2, ()
(kl=k,

where the sum is over a set of directions K.

The best set of directions E and the amplitude and phases of the associated
plane waves are determined by the local cubic and quartic terms in the bulk free
energy. Since the quartic bulk free energy is positive definite, while the cubic
term can always be made negative by an appropriate choice of the overall sign of
¥(r), it follows that the highest temperature non-uniform phases will be those with
non-vanishing cubic bulk free energies.

If one takes a local quartic bulk free energy as in Eq. (1), then the most
favored structure depends on a rather delicate competition between the cubic and
quartic terms, the quartic term tending to suppress structures that would be favored
by the cubic term alone but which have large density fluctuations. The analysis of
Alexander and McTague avoids this complication, a simplification which can be achieved
by taking the quartic term to be proportional to the square of the quadratic total
bulk free energy per unit volume. Such a quartic term is effectively non-local, a
price one must pay if the cubic term is to control the energetics entirely by itself.
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(The quartic term is also treated this way in the work of Bak and of Kalugin et al.
below. )

The cubic bulk free energy will only be non-zero if the set of directions k con-
tains many trios that add up to zero. Alexander and McTague argue that the most effi-
cient way to produce many such trios is to take a set of twelve directions pointing
from the origin to the centers of the twelve edges of a regular octahedron (an octa-
hedral "edge model"). Such a set forms the fundamental star of a face centered cubic
reciprocal lattice, and therefore generates a density ¥(r) with body centered cubic
translational symmetry. This is said to explain certain observed preferences for BCC
structures near the solid-liquid phase boundary.

Alexander and McTague also note in passing that another way to generate many
triangles is to take a set of thirty directions peinting from the origin to the cen-
ters of the thirty edges of a regular icosahedron {icosahedral “edge model“). Such a
structure will generate an icosahedral quasicrystal. Quasicrystals being unknown in
1978 and the BCC structure, in any event, being more favorable within the Alexander-
McTague model, the icosahedral structure was dismissed with the remark that when crys-
tal nucleation is inhibited the resulting amorphous solids do indeed tend to have local
icosahedral particle arrangements.

With the discovery of quasicrystals, the Alexander-McTague approach has been re-
examined and generalized in a number of different ways. We next compare and contrast
the mechanisms responsible for stabilizing the quasicrystal phase in five recent
Landau models and hope that experiments will soon help us decide which if any of these
occurs in the observed systems.

ITI - RECENT LANDAU THEORIES OF QUASICRYSTAL FORMATION

(1) In the model of Kalugin, Kitaev, and Levitov /4/, relaxing the assumption
that the gradient energy is so overwhelmingly dominant that only wave-vectors of a
single magnitude ko can appear in the superposition appears to favor a phase with
icosahedral symmetry over the BCC phase. Instead of taking K(k) to give an infinitely
steep well at ko they allow it to be quadratic:

- ) 2
K(k) = K(ko) + K1(T k/ko) . {5)
As a result, the form of the quadratic free energy is generalized from (4) to :

A N S BT (6)

=

If K1 approaches infinity we recover the Alexander-McTague 1imit, but an interesting
situation arises when Kl is not infinite, but still very large. In that case addition-
al wave vectors with a magnitude different from the primary set need not be prohibi-
tively costly provided that the second magnitude is not very far from ko' This extra
flexibility does little to help the BCC structure, because the next shell of wave-

vectors in reciprocal space has a radius that is 41.4% greater than the fundamental
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star.

If, however, one takes as the fundamental star the twelve vectors pointing from
the origin to the twelve vertices of an icosahedron (icosahedral "vertex" set), then
a secondary set pointing from the origin to the centers of the thirty edges can be
generated as sums or differences of pairs from the first set. Vectors in the second
set (the original Alexander-McTague edge vectors) are anly 5.15% longer than those in
the first. Furthermore, the wave vectors in the second set not only permit the for~

mation of all the triangles in the Alexander-McTague model, but also, because of the
way in which they are generated by the first set, permit the construction of addition-
al triangles containing two vertex vectors and an edge vector. This is very favorable
for the cubic bulk free energy.

Continuing to use the simplified form for the quartic bulk free energy, Kalugin
et al. show that the BCC crystal will not be favored over such an icosahedral quasi-
crystal until K1 exceeds 69.5 v - i.e., until the well favoring a single magnitude of
k is very steep indeed.

The conclusion that by a slight softening of the k-space well in the Alexander-
McTague model, the quasicrystal can actua11y become more stable that the BCC crystal
strictly holds only in the approximation where th> local quartic term is taken to be
proportional to the square of the quadratic term in the bulk free energy. We repeated
the analysis with the full Jocal quartic term instead and discovered that there is no
vajue for Kl’ not even K1 equal to zero (K1 must always be > 0), for which the quasi-
crystal can become more stable that the BCC crystal. In this 1imit, the first order
transition temperature from the isotropic phase to the BCC phase is higher than
that to the icosahedral phase, so that the formation of the BCC phase preempts that
of the quasicrystal phase. Apparently, allowing the cubic term to determine the
energetics all by itself biases the situation too heavily in favor of the phase with
icosahedral symmetry . Allowing the quartic term to suppress structures with large
density fluctuations that would be favored by the cubic term alone leads one back to
the BCC structure, even if the quadratic well is softened considerably so as to in~-
clude wave vectors near in length to the original set in reciprocal space.

(2) Mermin and Troian /5/ take a different approach to extending the Alexander-
McTague model. They first examine the effect of keeping the local quartic term which
suppresses extreme deviations in the density. This makes the free energy minimization
problem considerably Tess straightforward, since the phases of the plane waves favored
by the cubic term are usually incompatible with those favored by the quartic. Depend-
ing on the choice of phases, Mermin and Troian find three distinct icosahedral station-
ary points to the free energy. None of them are global minima, all losing out to the
BCC structure at high temperatures (-0.055 <t < 0.089), and to ejther a planar
hexagonal phase (-2.15 <1 < -0.055) or a "smectic" phase ( t < -2.15) at successive-
1y Tower temperatures. Two of the three icosahedral structures are not even local
minima of the free energy (1) but the third (‘the one with the smaliest cubic and
quartic terms once the number of wave vectors in the star has been scaled out from
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< -0.9. {None of the three are

~

the free energy) appears to be a Tocal minimum for T
local minima for positive t.) To prove that this structure is indeed a local minimum
corresponding to a metastable state, which all quasicrystals seen to date seem to be,
requires checking that that this structure is rot only locally stable against phase
fluctuations but against the addition of wave vectors nearby in reciprocal space
which could possibly cause the structure to go periodic. This last piece of analysis
is underway.

To go beyone Alexander~McTague, Mermin and Troian next introduce additional shell
in k-space. At the simple phenomenological Tevel of their argument it is a matter of
taste whether these additional shells are to be associated with different sets of
Fourier components of a single order parameter ¥(r) or whether they should be viewed
as associated with additional "single shell" order parameters associated with physi-
cally distinct constituents of the alloy.

In contrast to the model of Kalugin et al., in the approach of Mermin and Troian
quasicrystalline behavior requires special geometrical relationships between the
radii of the allowed shells. One can get icosahedral quasicrystals if the ratios
correspond to the lengths of higher harmonics {i.e., linear combinations with integral
coefficients) of the basic icosahedral star of unit vertex vectors. This includes but
is not limited to the ratio of 1.051 considered by Kalugin et al. For these special
ratios of wave vectors that the icosahedral geometry can take advantage of, Mermin
and Troian argue but do not prove that there are regions of the phase diagram where
quasicrystalline structures succeed in having a lower free energy than any of the
very large number of competing structures one can construct from such sets of wave
vectors.

To make their model analytically tractable they work in a region of the phase
diagram where the amplitude of one of the components is large compared with the other
so that only terms up to quadratic order in the weak component need be retained.

This makes it possible explicitly to eliminate the second component, returning to

a one-component model with an effective quartic interaction that is non-local. In
this version of their model it is the quartic term, rather than the cubic, that
stabilizes the jcosahedral quasicrystalline phases, and the stability occurs not at
temperatures immediately below the transition from the liquid, but at temperatures
Tow enough that the quartic terms are at least comparable to the cubic. The extension
of this model to conditions where both components have comparable weight (or, equiv-
alently in the case of the length ratio 1.051, the’extension of the analysis of
Kalugin et al. to a local quartic bulk free energy ) is under investigation.

(3) Bak /6/ has suggested a rather different mechanism for the stabilization
of icosahedral quasicrystals within the Landau theory ( although his main interest
and contribution to this subject lies with the "geometrical" approach mentioned in
the introduction - see the contributed paper in this series). Within the framework
described above we would characterize his model as follows. He retains the Alexander-
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McTague assumption of a single spherical shell in k-space and the simplified non-
local quartic term. He also keeps a local quintic term in the bulk free energy and
must therefore also have a stabilizing sixth order term. If the cubic term is suf-
ficiently small, then because the quartic term is proportional to the square of the
quadratic, the quintic term will play a major role in the determination of the struc-
ture. A set of directions parallel to the edges of an icosahedron (equivalent to the
icosahedral "edge" set) will contribute to this term, among other ways, through the
many pentagonal quintuples that add to zero. Bak calculates that these pentagons are
enough to stabilize an icosahedral quasicrystal in a single sheil model with suffi-
ciently small cubic term.

His analysis, however, ignores the fact that the BCC structure , among others,
can also take advantage of the local quintic term. Furthermore, the effects of a local
quartic term have not been considered nor the effects of a local stabilizing sixth
order term. It is still an open question, then, whether a single shell model with
a local bulk free energy can support quasicrystalline phases through the effects of
the quintic term, even if the cubic term happens to be entirely absent.

{4) Jaric /7/ has given a rather different twist to the basic Landau theory.

(For an extension of this work see the contributed paper in this series also.) He
argues that there is no reason to 1imit non-local terms to the quadratic free energy.
He does retain the assumption of a single shell in k-space, in which case it is easy
to establish that the cubic term remains local, but there is now a two-parameter
family of possible non-local quartic terms, and any number of ways to pick quartic
couplings that will stabilize an icosahedral quasicrystal over competing crystalline
phases.

Instead of restricting the class of models with the requirement that the higher
order free energy be local, Jaric avoids the arbitrariness of a large family of quar-
tic terms by turning to a modetl first put forth by Nelson and Toner /8/, in which
the transition to a positionally ordered state is driven by the prior appearance of
Tong-range arientational order in the liquid state. In this model long-range icosa-
hedral orientational order may or may not induce long-range icosahedral quasicrystal-
1ine positional order. If it does, however, the acquisition of quasicrystalline po-
sitional order from the orientationally ordered liguid will depend only on the quad-
ratic terms in the density order parameter ¥, because the coupling of the orientation-
al order parameter to a density wave comes in through terms quadratic in v.

As a result the mode) restores a certain universality to the mechanism for the
onset of quasicrystalline order, provided, of tourse, the icosahedral quasicrystalline
translational ordering takes place against the background of an already icosahedrally
orientationally ordered liquid. Jaric shows that an interesting conseduence of this
universal structure is that if an icosahedral quasicrystalline density wave is in-
deed induced, then the fundamental star of wave vectors must either be the fcosahedral
vertex or face vectors (pointing from the origin to the centers of the twenty faces),
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but never the edge vectors, in agreement with the observed diffraction pattern which
is incompatible with an edge model, as shown by Nelson and Sachdev /9/. We now
present another type of mean field theory which can also stabilize the icosahedral
quasicrystal.

IV - DENSITY FUNCTIONAL THEORY OF QUASICRYSTAL FORMATION

A1l of the Landau theories described above should be viewed as attempts to for-
mulate simple and natural model free energies, and to explore whether they are cdpable
of yielding quasicrystalline behavior. These elementary models are, if anything, too
successful, since they seem capable of producing quasicrystalline equilibrium states,
whereas the evidence to date seems to indicate that the quasicrystalline state is
only metastable. The final approach we describe sacrifices simplicity for what one
may hope will prove to be realism.

(5) Sachdev and Nelson /10/ base their treatment of quasicrystalline order on the
density functiona] theory of Ramakrishnan and Yussouff /11/.(A similar approach is
being developed and expanded by Haymet /12/.) For the local bulk free energy they
take

fé;;-} - d3rp(rmnagl- 11, p(r) =pq *elr)s (7)
0

instead of a simple polynomial. More importantly, for the function K(k) appearing

in the gradient energy they make no phenomenological assumptions restricting k to
one or a few spherical shells. Instead they require that when the nonlinear terms in
the bulk free energy are ignored, the remaining quadratic free energy should yield
the observed static structure factor for the liquid state. This is enough to determine
K(k) in terms of either the observed liquid state scattering data, or in terms of
calculations for appropriate models of the liquid state. However K is determined,
the significant point is that the weights given to the various Fourier components

in the superposition ¥(r) are no longer phenomenological pérameters at one's dis-
posal, but determined by the properties of the Tiquid just above the transition to
the positionally ordered state.

In general, a very large number of Fourier components will now have non-vanish-
ing weight, and extensive numerical computations must be done to arrive at a struc-
tufe. Using as input a structure factor with a high degree of short-range icosahedral
order, Sachdev and Nelson find that convergence for the icosahedral crystals is not
achieved until one-hundred different shells in momentum space are included. They find
that the most favorable density now has face centered cubic translational symmetry,
body centered cubic local minima have a higher free ehergy, and quasicrystalline
icosahedral Tocal minima have higher free energies still.

Clearly the density functional method, unlike the others we have described,
is not an approach for back of the envelope model calculations. It remains to be
seen whether it can succeed ( as the earlier models surely cannot) in providing
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realistic predictions for when quasicrystalline structures will or will not be
Tikely to emerge from the melt.
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