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When transport in a Fermi liquid is treated in the relaxation time approxima-
tion, the quasiparticle energy appearing in the local equilibrium distribution
must have the form determined by the nonequilibrium distribution function.
Sometimes this requirement is overlooked and the equilibrium quasiparticle
energy is used. In applications to unpolarized normal *He the resulting error
can be repaired by a simple rescaling of the relaxation rates 1/ by the Fermi
liquid corrections 1+ F'/(21+ 1). The distinction between the two forms of the
relaxation time approximation is thus of little consequence, and quantities
independent of the relaxation time are entirely unaffected. We point out that
more significant damage results from using this wrong relaxation time approxi-
mation in a multicomponent (or spin-polarized single-component) Fermi liquid.
In particular, it is essential to use the correct Jorm to derive the velocity of
hydrodynamic sound, even though the incorrect form also satisfies all the
conservation laws, and even though the sound velocity is independent of the
relaxation time,

1. INTRODUCTION

In treating nonequilibrium phenomena in a Fermi liquid with Landau’s
kinetic equation, it is sometimes convenient to replace the full collision
integral I(n) by a simple relaxation time approximation. Dating all the way
back to the review of Abrikosov and Khalatnikov,' it has often been the
practice to make this relaxation time approximation in the form

I(n)=—(1/7)[8n—(8n)=3p - (p 8n)] (1)

Here én is the deviation of the quasiparticle distribution function n from
uniform equilibrium, and the angular brackets denote an average over all
directions of p.
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The justification for this form is that it represents collisions in a way
that conserves number, momentum, and energy. There is, however, a second
essential feature of the full collision integral that the approximation (1)
fails to preserve, namely that I(n) should vanish whenever n has the local
equilibrium form. This second condition can be achieved by a suitable
redefinition of 8n in (1), as is done in some of the more recent treatments
of Fermi liquid theory.** The fact that the incorrect form of I(n) in Eq.
(1) is used in some of the classic papers in the field, however, has not always
been emphasized.

The reason for the lack of attention to this point is probably this: if
the relaxation time approximation is generalized to one in which each
component in the spherical harmonic expansion of &n on the Fermi sphere
relaxes with its own [-dependent relaxation time, then the incorrect form
(1) can be converted to the correct relaxation time approximation by dividing
each 7, by the Fermi liquid correction 1+ F'/(21+1). Since the 7y are only
phenomenological parameters to begin with, this redefinition generally has
no significant consequences. _

The situation is quite different, however, when one deals with a multi-
component Fermi liquid, and it is our purpose in this note to call attention
to this fact. If the Fermi liquid consists of two or more independently
conserved components, then the error introduced by making the relaxation
time approximation in the form of the many-component analog of Eq. (1)
will in general lead to an incorrect result for a quantity—the velocity of
hydrodynamic sound—in which the relaxation time does not appear at all.
Such an error cannot, of course, be repaired by using a redefined relaxation -
time. To derive the correct velocity of sound in the multicomponent system
it is essential to use a relaxation time approximation that has built into it
not only the conservation laws, but also the fact that collisions maintain
local equilibrium.

It seems timely to make this cautionary point, since there has been °
interest in recent years in the two-component Fermi liquid consisting of
strongly polarized *He.* Our hydrodynamic example applies to such a system
at frequencies large compared with the spin relaxation rate.

2. HYDRODYNAMIC SOUND IN AN N-COMPONENT
FERMI LIQUID IN THE RELAXATION TIME APPROXIMATION

We consider N independently conserved fermions, characterized in
equilibrium by chemical potential y; and quasiparticle distribution functions

fi(p)=0((p) — ) (2)

where O is the Fermi function, which it will suffice for our purposes to take
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as a step function. In nonequilibrium configurations, to leading order in
the deviation from uniform equilibrium,

8n;(p) = m(p) —17(p) (3)

the quasiparticle energies acquire the form

&i(p) = £7(p) + 8¢,(p)
d3pf
0 [ ¥

=&i(p)+ Iﬁ'( ) on(p) (4)

p ; ij p p }(p (211_)3
The simplest (correct) form of the relaxation time approximation
expresses the fact that collisions drive the system toward local equilibrium,

by taking I(n;) to be of the form

I(n)=~(1/7)[n;(p) —O((p) + 6&:(p) — jts —p - u — 8i)] (5)

The incorrect form (1) results from omitting the term 8¢;(p), thereby over-
looking the fact that the quasiparticle velocity-momentum relations in local
- equilibrium depend on the local form of the nonequilibrium distribution.
At various points below we shall mention the consequences of such an
omission. '

To linear order in the deviations from equilibrium Eq. (5) assumes the
form

I(n,—)=-:—_ %)[Z(I+F),-jzﬁ—p-u-—6u,-] (6)
where
8n;(p) = vi(p)(—af7/ael) (7)

and we define the dimensionless Fermi liquid parameters by
. :
Js(B, ) g = Fy(p, p) = Lz FyP(p - p') (®)

where Pi(p - §) is the Legendre polynomial of order /. Here g; is the density
of states for the jth component,
8= m_TPj/ZWz (9)

and p; and m} are the Fermi momentum and effective mass for the jth
component. We use an operator notation in which

dQ,
)= [ R, 1) e (10

The functions &u,(r, t) and u(r, t) are determined by requiring that
collisions conserve the density of each separate component and the total
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momentum:

Jf(n,.)df’p/(:zwf:o, i=1,...,N
(11)
E_J‘ I(n)p d°p/(2m)’ =0
[The condition of energy conservation follows from those of number con-
servation since I(n,(p)) is proportional to —af%/ae®= 8(e?—w;); thus the

linearized theory is consistent with energy conservation whether or not the
term in 8¢, is included in Eq. (5).] To linear order these N + | conditions give

N
S = Y ((1+F)y), i=1,...,N
j=1

N (12)
u= .E:,;I 33;‘Pj(ﬁ(1+F)jk”k)/z gp;

so that

I(n:)=l(a—fz)[l7;—(ﬁf)—z 3Aul3(ﬁ17;>:| (13)
T\JE; J

where

B=2 (1+F)y (14)
J

Aij = aibj: a; =Pi/z EJP?, b= &i0; (15)

Had the term in 8ge; been omitted from Eq. (5), the structure of Eq.
(13) would have been the same except that #; would have been replaced
by ». In the one-component case this is precisely Eq. (1). When there is
Just one component this modification has no effect on the structure of the
zero-eigenvalue eigenfunctions of the collision term, which is why the

_damage only shows up in quantities that depend on the relaxation time .

When there are many components, however, because F' is a matrix, the '
structure of the zero-eigenvalue eigenfunctions of the collision term does
depend on whether 7, or » appears in Eq. (13), and the failure to recognize
that it should be #; leads to incorrect results even for quantities that do not
depend on 7. We illustrate this in the case of the velocity of hydrodynamic
sound.

The Fourier-transformed kinetic equation has the form
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The solution symmetric about the direction of q is given by v=(1+F)"'7,
where

v=[1=iwr(1+ F)™"+igV cos 6+]"'((#)+3A cos 6 (7 cos ) 17

Here V is a diagonal matrix whose entries are the Fermi velocities, ¥ is an
N-component vector, and @ is the angle between p and §. Since qV/w is
of order unity, expanding the inverse operator to leading order in w7 gives

v=[1+iwr(1+ F)™" —igV cos 67]((#)+3A cos 8 (7 cos 6))  (18)

Equation (18) requires the consistency conditions

|4
(1+ F)(5)— L A(5 cos 8) =0 (19)
w
. I =1
%tf(ﬁ)+[l—(l+iw'r(l+%) )A](Fcos 0)=0 (20)
Using the first of these to eliminate (7) from the second, we have
(7 cos 0); =3, OyA; (P cos 6), (21)
Ik
where
Fl -1 . 2V
OU=[l+icu'r(I+—-) —HI—T(I-I-FOV)] (22)
3 3w i
Since A; has the simple factored form a;b;, Eq. (21) has a solution provided
i

This gives for the sound velocity ¢ = w/g,*t

o2 — LuspgO1+ FY) oy, (24)
ZUpl'gi(I +F'/3)§’pj

If one follows the same procedure with 7 replaced (incorrectly) by »
on the right side of Eq. (16), one finds the incorrect expression for ¢,

Ly 3pglV(+F) V(1+FY/3)]p, (25)
Zigpi

*In the two-component case this expression differs from that found in Czerwonko’s analysis®
of the kinetic equation for a spin-polarized Fermi liquid. His error can be traced to his
imposition of a condition of constant spin density s, which is incompatible with the actual
dynamics (as is evident if one considers a completely polarized system). Unlike his result,
the correct sound velocity (24) is guaranteed to be real by the stability conditions he quotes.
The correct sound velocity for the spin-polarized Fermi liquid, essentially in the form of our
Eq. (29) below, is given by Meyerovich.®

The derivation of this result has not required truncating the expansion of Fj;(j - ") in Legendre
polynomials. .
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As remarked above, the disagreement arises from the fact that F' is a
matrix, so that the two results agree in the one-component limit. They also
agree when p;, g, v, and 3, F; are all independent of i (as in an unpolarized
liquid of spin-s fermions, N =2s+1).

We conclude by showing that the sound velocity ¢ in Eq. (24) is indeed
the correct hydrodynamic velocity,

P
= (-a—) (26)
ap ni/n
where P is the pressure, n is the total number density n=73, n,
d’p
= | n(p)—= 27
nt J‘ nl(P) (211_)3 ( )

and p =}, mn; is the total mass density, m, being the bare particle mass
of the ith component. The zero temperature Gibbs-Duhem relation is

dP=Z_ n; du, (28)
so that
21 Op
i | == 9
‘T E "'"’(an,-)nk (22

The derivative ou;/an; is given, as in the one-component case, by noting
that in equilibrium, changes in the chemical potentials are accompanied by
changes in the number densities, which are related by

n; = 8’:‘(5#.' _ng S"j) (30)
]
Then Eq. (29) becomes

F=2¥ n (14 F%), (31)
P ij g
Since n;=p,gv;/3, this agrees with Eq. (24) provided the sum in the
denominator of Eq. (24) is just 3p. This last equality follows from the
N-component effective mass sum rules:
In arbitrary nonequilibrium configurations the momentum density must
equal the total mass current,

d’p dei(p) d’p
g I "i(P)P(zﬂ_); _§ -[ mini(P) Bp (271_)3 (32)

As in the one-component case, taking the linear variation & of both sides
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of Eq. (32) gives*

m; m_f FJI
D= g.p—+5 gp—d i 3
&p; 8Pi )j:s.',p,mf 3 (33)
from which it follows directly that
Fi -1 m:
Xp.-&(HT) P=L—5p;g=3p (34)
iJ i 7 m;
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*When specializing to the case N =4, these relations agree with those Oliva and Ashcroft’
derive for a Fermi liquid of two spin-1/2 components. In the case N=2 they agree with the
relation for spin-polarized *He given by Bashkin and Meyerovich?® (Eq. (4.2.5)), but not with
the relation quoted more recently by Meyerovich,® unless B is multiplied by a factor p./p.
in his Eq. (A.5).



