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Recent mean field theories of quasicrystalline order are surveyed.

The symmetry group Cs is frequently encountered in the organic world, from the
shapes of starfish to the cross-sections of fruit and the shapes of certain viruses. But
such symmetry is conspicuously missing in the world of crystals, an absence finding
its explanation in the well known elementary theorem that no periodic two- or
three-dimensional structure can contain axes of fivefold rotational symmetry.

Against this background, the announcement last year by ‘Shectman et al.' of a
metallic solid (Al ggMng,,) With diffraction spots as sharp as those of crystals but
with icosahedral point group symmetry, caused something of a sensation among
metallurgists and condensed matter physicists. Quasicrystals, as these materials are
now called, can also be formed in alloys of Al with Ru, Pd, Pt, Cr, and Fe. They
have been produced both by the splat-cooling method used in the original discovery,
and also, more recently, by ion beam mixing techniques.?

The classic theorem loses its prohibitive power when one realizes a simple fact that
crystallographers had, over the years, come to overlook: that periodicity, though
sufficient for the existence of sharp Bragg peaks, is by no means necessary. A
density, for example, that is a simple superposition of two incommensurately
periodic densities, and is therefore itself not periodic, will nevertheless have a
Fourier transform that is a sum of delta-functions simply because it is the sum of the
transforms of the two periodic components.

The crystallographic questions posed by the discovery of Shechtman et al. are
what arrangement of atoms is required by the observed quasicrystalline diffraction
patterns, and why it is that the atoms should choose to assume such exotic
icosahedrally symmetric configurations in preference to the conventional periodic
crystalline forms.

Approaches to these questions have fallen into two categories: a geometrical
approach, giving systematic prescriptions for the construction of quasicrystalline
lattices with icosahedral symmetry, and a phenomenological approach, aimed at
ascertaining whether any of the conventional elementary approaches to crystal
formation might not contain metastable (or even stable) quasicrystalline solutions
_ that had hitherto been overlooked because of the almost universal expectation that

positional ordering must be crystalline.
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We limit our attention here to the second type of approach. The phenomenologi-
cal derivations of quasicrystalline order that have been put forth to date are all
based on the Landau® theory of conventional crystal formation from the liquid
state. At this stage of the subject the aim of such theories (with the possible
exception of the approach of Sachdev and Nelson described below) has been not so
much to give an accurate quantitative description of quasicrystalline ordering, as it
has been to demonstrate that contrary to earlier prejudice, there is nothing out-
landish about such ordering—that quasicrystalline states can compete successfully
with conventional crystalline states even in the most elementary phenomenological
models of solidification.

The possible non-uniform structures that can form from the isotropic fluid are
determined in Landau theory by minimizing the free energy density f, which is taken
to be a function of Y(r), the deviation of the atomic density p(r) from its
equilibrium value p,. The free energy density f has two competing terms: a gradient
term, fy,q, Which represents the effect of non-local interactions in the liquid tending
to favor a non-uniform density, and a bulk term, f,.., which represents the
preference for local thermodynamic equilibrium at a uniform density.

The two contributions to the free energy density have the general forms:

fya = V[ PR (= )9 () +
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If the deviation ¢ of the density from non-uniformity is small (as it will be if the
transition is only weakly first order) then higher order terms in the expansions (1)
can be ignored. One often (but not always—see below) truncates the non-local
gradient free energy at second order in ¥, retaining the fourth order terms necessary
for thermodynamic stability only in the local bulk free energy. Note that the bulk
terms can also be cast in the form of gradient terms by appropriate choice of
delta-function kernels X; the real content of the separation (1) lies in the assumption
that all terms higher than second order in { can be taken to be local.

The simplest version of such a theory was put forth by Alexander and McTague *
several years ago. Their analysis applies in the limit in which the dominant term in
the free energy is the quadratic gradient free energy. Since this has the k-space form:

%K(k)\b‘(k)‘ﬁ(k)- )]

it follows that the most favorable structures will be superpositions of a set of wave
vectors that all lie on a single spherical shell of radius k,, where k, is the magnitude
of the wave-vector that minimizes K (k).

If we combine all the quadratic free energy terms, defining

=1+ K(ky), (3)
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then the quadratic part of the free energy in this single shell limit is just

=7 T lp(x)l (4)

[kl =kq

where the sum is over a set of directions k.

The best set of directions % and the amplitude and phases of the associated plane
waves are determined by the local cubic and quartic terms in the bulk free energy.
Since the quartic bulk free energy is positive definite, while the cubic term can
always be made negative by an appropriate choice of the overall sign of ¥(r), it
follows that the highest temperature non-uniform phases will be those with non-
vanishing cubic bulk free energies.:

If one takes a local quartic bulk free energy as in Equation (1), then the_ most
favored structure depends on a rather delicate competition between the cubic and
quartic terms, the quartic term tending to suppress structures that would be favpred
by the cubic term alone but which have large density fluctuations. The analysis of
Alexander and McTague avoids this complication, a simplification that can b.e
achieved by taking the quartic term to be proportional to the square of the quadratic
total bulk free energy per unit volume. Such a quartic term is cf.fectivc!y non—chal, a
price one must pay if the cubic term is to control the energetics entirely t?y itself.
(The quartic term is also treated this way in the work of Bak and Kalugin et al.
discussed below.) .

The cubic bulk free energy will only be non-zero if the set of directions & contains
many trios that add up to zero. Alexander and McTague argue that thc.m.ost
efficient way to produce many such trios is to take a set of twelve directions pointing
from the origin to the centers of the twelve edges of a regular octahedron (an
octahedral “edge model”). Such a set forms the fundamental star of a face centered
cubic reciprocal lattice, and therefore generates a density y(r) with body centered
cubic translational symmetry. This is said to explain certain observed preferences for
bee structures near the solid-liquid phase boundary.

Alexander and McTague also note in passing that another way to generate many
triangles is to take a set of thirty directions pointing from the origin to the centers of
the thirty edges of a regular icosahedron (icosahedral “edge model”). Such a
structure will generate an icosahedral quasicrystal. Quasicrystals being unknown in
1978 and the BCC structure, in any event, being more favorable within the
Alexander—McTague model, the icosahedral structure was dismissed with the remark
that when crystal nucleation is inhibited the resulting amorphous solids do indeed
tend to have local icosahedral particle arrangements.

With the discovery of quasicrystals, the Alexander—McTague approach has been
reexamined and extended in several different ways.

(1) Kalugin et al.® relax the assumption that the gradient energy is so overw.hehn-
ingly dominant that only wave-vectors of a single magnitude &, can appear in the
superposition. Instead of taking K(k) to give an infinitely steep well at &, they
allow it to be quadratic:

K(k) = K(K,) + Ky(1 = k/ko)’. (5)
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As a result, the form of the quadratic free energy is generalized from (4) to:

o E;[T + Ky(1 = k/ko) ] 0 (R)I% )

If K, approaches infinity we recover the Alexander-McTague limit, but an
interesting situation arises when X, is not infinite, but still very large. In that case
additional wave-vectors with a magnitude different from the primary set need not be
prohibitively costly provided that the second magnitude is not very far from k. This
extra flexibility does little to help the BCC structure, because the next shell of
wave-vectors in reciprocal space has a radius that is 41.4% greater than the
fundamental star.

If, however, one takes as the fundamental star the twelve vectors pointing from
the origin to the twelve vertices of an icosahedron (icosahedral “ vertex” set), then a
secondary set pointing from the origin to the centers of the thirty edges can be
generated as sums or differences of pairs from the first set. Vectors in the second set
(the original Alexander and McTague edge vectors) are only 5.15% longer than those
in the first. Furthermore, the wave vectors in the second set not only permit the
formation of all the triangles in the Alexander and McTague model, but also,
because of the way in which they are generated by the first set, permit the
construction of additional triangles containing two vertex vectors and an edge
vector. This is very favorable for the cubic bulk free energy.

Continuing to use the simplified form for the quartic bulk free energy, Kalugin
et al. show that the BCC crystal will not be favored over such an icosahedral
quasicrystal until K, exceeds 69.12 T—i.e., until the well favoring a single magni-
tude of k is very steep indeed. The remarkable conclusion is that by a very slight
softening of the k-space well in the Alexander—McTague model, the quasicrystal can
actually become more stable than the BCC crystal.

(2) Mermin and Troian® take a different approach to extending the Alexander-
McTague model. They first examine the effect of keeping the local quartic term
which suppresses extreme fluctuations in the density. This makes the free energy
minimization problem considerably less straightforward, since phases of the plane
waves favored by the cubic terms are in general incompatible with those favored by
the quartic.

Depending on the choice of phases, Mermin and Troian find three distinct
icosahedral stationary points to the free energy. None of them are global minima, all
losing out to the BCC structure at the highest temperatures and to either a planar
hexagonal or a “smectic” phase—peculiar structures favored by the local guartic
term—at successively lower temperatures. Two of the three icosahedral structures
have since been shown not even to be local minima, of the free energy (1), but the
third may be a local minimum in a very restricted range of the phase diagram.

To go further beyond Alexander and McTague, Mermin and Troian next intro-
duce additional shells in k-space. At the simple phenomenological level of their
argument it is a matter of taste whether these additional shells are to be associated
with different sets of Fourier components of a single order parameter (r) (as in the

work of Kalugin er al) or whether they should be viewed as associated with
additional “single shell” order parameters associated with physically distinct con-
stituents of the alloy (the point of view taken in the Mermin and Troian paper).
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In contrast to the model of Kalugin er al. where quasicrystalline behavior emerges
as soon as the single shell of Alexander and McTague is significantly softened, in the
approach of Mermin and Troian quasicrystalline behavior requires special geometri-
cal relationships between the radii of the allowed shells. One can get icosahedral
quasicrystals if the ratios correspond to the lengths of higher harmonics (i.e., linear
combinations with integral coefficients) of the basic icosahedral star of unit vertex
vectors. This includes but is not limited to the ratio of 1.051 considered by Kalugin
et al. For these special ratios of wave vectors that the icosahedral geometry can take
advantage of, Mermin and Troian argue (but do not prove) that there are regions of
the phase diagram where quasicrystalline structures succeed in having a lower free
energy than any of the very large number of competing structures one can construct
from such sets of wave vectors.

To make their model analytically tractable Mermin and Troian work in a region
of the phase diagram where the amplitude of one of the components is large
compared with the other, so that only terms up to quadratic order in the weak
component need be retained. This makes it possible explicitly to eliminate the
second component, returning to a one-component model with an effective quartic
interaction that is non-local. In this version of their model it is the quartic term,
rather than the cubic, that stabilizes the icosahedral quasicrystalline phases, and the
stability occurs not at temperatures immediately below the transition from the
liquid, but at temperatures low enough that the quartic terms are at least comparable
to the cubic.

The extension of their model to conditions where both components have compara-
ble weight (or, equivalently in the case of the length ratio 1.051, the extension of the
analysis of Kalugin et al. to a local quartic bulk free energy) is under investigation.

(3) Bak” has suggested a rather different mechanism for the stabilization of
icosahedral quasicrystals within the Landau theory. Within the framework described
above we would characterize his model as follows. He retains the Alexander-
McTague assumption of a single spherical shell in k-space and the simplified
non-local quartic term. He also keeps a local quintic term in the bulk free energy and
must therefore, of course, also have a stabilizing sixth order term. If the cubic term is
sufficiently small, then because the quartic term is proportional to the square of the
quadratic, the quintic term will play a major role in the determination of the
structure. A set of directions parallel to the edges of an icosahedron (equivalent to
the icosahedral “edge” set) will contribute to this term, among other ways, through
the many pentagonal quintuples that add 1o zero. Bak calculates that these penta-
gons are enough to stabilize an icosahedral quasicrystal in a single shell model with
sufficiently small cubic term.

His analysis, however, ignores the fact that the BCC structures, among others, can
also take advantage of the local quintic term. Furthermore, the effects of a local
quartic term have not been considered nor the effects of a local stabilizing sixth
order term. It is therefore still an open question whether a single shell model with a
local bulk free energy can support quasicrystalline phases through the effects of the
quintic term, even if the cubic term happens to be entirely absent.

(4) Jaric ® has given a rather different twist to the basic Landau theory. He argues
that there is no reason to limit non-local terms to the quadratic free energy. He does
retain the assumption of a single shell in k-space, in which case it is easy to establish
that the cubic term remains local, but there is now a two-parameter family of
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possible non-local quartic terms, and any number of ways to pick quartic couplings
that will stabilize an icosahedral quasicrystal over competing crystalline phases.

Instead of restricting the class of models with the requirement that the higher
order free energy be local, Jaric avoids the arbitrariness of a large family of quartic
terms by turning to a model first put forth by Nelson and Toner,® in which the
transition to a positionally ordered state is driven by the prior appearance of
long-range orientational order in the liquid state. In this model long-range icosa-
hedral orientational order may or may not induce long-range icosahedral quasicrys-
talline positional order. If it does, however, the acquisition of quasicrystalline
positional order from the orientationally ordered liquid will depend only on the
quadratic terms in the density order parameter 1, because the coupling of the
orientational order parameter to a density wave comes in through terms quadratic
in Y.

As a result the model restores a certain universality to the mechanism for the
onset of quasicrystalline order, provided, of course, the icosahedral quasicrystalline
translational ordering takes place against the background of an already icosahedrally
orientationally ordered liquid. Jaric shows that an interesting consequence of this
universal structure is that if an icosahedral quasicrystalline density wave is indeed
induced, then the fundamental star of wave vectors must either be the icosahedral
vertex or face vectors (pointing from the origin to the centers of the twenty faces),
but never the edge vectors, in agreement with the observed diffraction pattern which
is incompatible with an edge model, as shown by Nelson and Sachdev.®

All of the Landau theories described above should be viewed as attempts to
formulate simple and natural model free energies, and to explore whether they are
capable of yielding quasicrystalline behavior. These elementary models are, if
anything, too successful, since they seem capable of producing quasicrystalline
equilibrium states, whereas the evidence to date seems to indicate that the quasi-
crystalline state is only metastable. The final approach we describe sacrifices
simplicity for what one may hope will prove to be realism.

(5) Sachdev and Nelson!! base their treatment of quasicrystalline order on the
density functional theory of Ramakrishnan and Yussouff.!? For the local bulk free
energy they take

O e R RO R TN

instead of a simple polynomial. More importantly, for the function K (k) appearing
in the gradient energy they make no phenomenological assumptions restricting k to
one or a few spherical shells. Instead they require that when the nonlinear terms in
the bulk free energy are ignored, the remaining quadratic free energy should yield
the observed static structure factor for the liquid state. This is enough to determine
K(k) in terms of either the observed liquid state scattering data, or in terms of
calculations for appropriate models of the liquid state. However K is determined,
the significant point is that the weights given to the various Fourier components in
the superposition ¥(r) are no longer phenomenological parameters at one’s disposal,
but determined by the properties of the liquid just above the transition to the
positionally ordered state.
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In general, a very large number of Fourier components will now have non-vanish-
ing weight, and extensive numerical computations must be done to arrive at a
structure. Using as input a structure factor with a high degree of short-range
icosahedral order, Sachdev and Nelson find that convergence for the icosahedral
crystals is not achieved until one-hundred different shells in momentum space are
included. They find that the most favorable density now has face centered cubic
translational symmetry. Body centered cubic local minima have a higher free energy,
and quasicrystalline icosahedral local minima have higher free energies still.

Clearly the density functional method, unlike the others we have described, is not
an approach for back of the envelope model calculations. It remains to be seen
whether it can succeed (as the earlier models surely cannot) in providing realistic
predictions for when quasicrystalline structures will or will not be likely to emerge
from the melt.
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