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Abstract. - We show that a thin film with small dynamic contact angle and driven by an external 
body force is unstable to the formation of fingers in the direction perpendicular to the main flow. 
The instability is largest in the capillary region near the contact line, where the force due to 
surface tension is comparable to the viscous and gravitational forces. The fastest growing 
wavelength is calculated in the limit of small-amplitude disturbances. These instabilities may be 
related to finger patterns observed in gravitational flows and spinning drops. 

Recent studies of the physics of dynamic instabilities have focused upon the development 
of fingers [l] in Hele-Shaw flow. In this paper, we find that a thin wetting film, in an open 
geometry, driven by an external body force can also be unstable to fingering. The examples 
considered here are flow of a thin, viscous fluid layer down an inclined plane [2,31 and the 
spreading of a rotating drop[4]. In contrast with the Hele-Shaw flows[1,51, these 
instabilities occur at  the spreading front of a free surjace profile where there is no pressure 
gradient in the fluid for the case of uniform flow. Similarly, these fingering instabilities at 
the front of a viscous film are unrelated to the surface instabilities [6] which arise in systems 
with nonzero Reynolds numbers. In contrast to the wetting instability discussed here, the 
wavelength of the surface instability diverges as the Reynolds number vanishes. 

The time dependence of the base flow and the finger wavelength of a viscous flow down 
an inclined plane were studied experimentally by Huppert [2] and by Silvi and Dussan 131. 
Huppert suggested a scaling argument to predict the wavelength of the instability and found 
that this prediction compares favorably with experiment. Recently, Schwartz [71 also 
studied the fingering phenomenon in gravitational flow within the lubrication approximation 
and obtained time-dependent, numerical solutions. 

We consider the instability of the profile for a liquid film spreading down an inclined 
plane. The geometry is depicted in fig. 1, where the fluid flows down the plane in the 53 
direction, the profile is parameterized by a height H in the S direction, and the fingers occur 
as an instability in the Q direction. In the presence of both gravity and surface tension, the 
height profile, H ( x ,  y ) ,  is obtained from the solution of the height-averaged continuity 
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I 

Fig. 1. - Sketch of the profile geometry for flow down an inclined plane. The height in the z-direction 
has been greatly exaggerated. 

equation 

where t is the time, V =  t + T 
and @-directions, respectively. 

aH - + V * H V =  0 ,  
at 

9, and U and V are the height-averaged velocities in the 2- 
[n the lubrication approximation [8], the velocity is 

V = - H2 [pg sin a 2 + 0 Vxl , 
3 

where q is the viscosity, ,C is the fluid density, g is the gravitational constant, Q is the surface 
tension, and a is the angle from the horizontal of the inclined plane. Within our 
approximations, the curvature, x, is given by x = (H ,  + H,,), where H ,  = aH/ax. 

As in ref. [2], we first consider the unperturbed flow in the region away from the contact line 
(the outer region), where the capillary pressure (or surface curvature) is negligible and the 
viscous and gravitational forces balance. The self-similar solution for the one-dimensional flow 
is [2] H = (q/pg sin a)laxl@t-'n. In this approximation, the profile ends abruptly at x = x N ,  
which is determined from volume conservation as xN = (9A2g sin ~ / 4 q ) ~ ~ t ~ ' ,  where A is the 
cross-sectional area of the fluid layer ( i . e . ,  the volume of the drop per unit length along @). At 
x = xN, the height, H N ,  is given by HN(t )  = 3A/2xN. 

Naturally, for x near xN (the inner region), the profile is smoothed by surface tension. 
This region was discussed by Huppert, who omitted the terms corresponding to the motion 
of the contact line with the velocity U. = dxN/dt. Our calculations show that these convective 
terms are not negligible, even near the contact line. To find the solution for the unperturbed 
(y-independent) profile in the inner region, we set the contact line as the origin of the 
coordinate system. The profile is scaled as H(x ,  y, t )  = HN( t )  h(5, t) so that h+ 1 as E +  CQ in 
order to match to the solution (H-hN> in the outer region (x>>xN). The dimensionless 
length, 5, is the distance along $ measured from the contact line and scaled by 1 which is the 
characteristic length over which the surface tension competes with the gravity term, 
1 = H(3Cu)-lB, where the capillary number Ca = qUo/o << 1. In eq. (Z), the hydrostatic 
pressure terms proportional to H,  and HV are neglected, which is a valid approximation for 
thin films where the ratio HN(t)lZ = (3Ca)lB << tg a. The scaling indicates that when HN is 
used as the characteristic length, the flow in the inner region depends only on the capillary 
number. With this scaling, a quasi-steady solution of eqs. (1) and (2) determines the function 
h(5, t )  = ho(E) when the appropriate boundary conditions are used. For 5- CQ, the inner and 
outer solutions must match: all the derivatives, h,, h,,, ... vanish and ho+l .  Near the 
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contact line, the dynamics must take into account the singularities which arise [91 because of 
the no-slip ( V =  0 at H = 0) boundary condition. Two possible mechanisms which relieve 
these singularities are i) the presence of a thin film ahead of the contact line [lo] or ii) the 
existence of a region with slip[11]. 

We choose to match the solution in the inner region to a thin film of thickness bHN, and 
the resulting equation for the profile is 

The solution to eq. (3) is shown in fig. 2, for several values of b << 1. Within a distance O(Z) of 
the contact line, there is a strong maximum of the profile which decays away to a value of 
ho+ 1 in an oscillatory manner as E +  W. The height of the maximum is a weak (logarithmic) 
function of b. 

Fig. 2. - Solution of eq. (3) for the unperturbed profile as a function of At, which includes an arbitrary 
shift along the E direction so that the maxima line up. 

We now consider the linear stability of the uniform profile to small perturbations in the Q 
direction. For simplicity, we neglect terms of order b << 1 in the equations; their inclusion is 
straightforward. Scaling the y-coordinate by I ,  we define <=yll ,  and describe these 
perturbations by the wave vector Q which corresponds to the dimensionless wave vector 
q = Q1. The position of the boundary is displaced from t = 0, to a value t = tB, where 

If A(5) = cos qC, then the region where - 7d2 < qC < id2 represents a section of the boundary 
perturbed in the forward 2 direction4.e. a finger. The timedependent amplitude of the 
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perturbation is B(t) and the finger grows if aB/at > 0. The growth law is calculated from a 
linear stability analysis, where the scaled film thickness is written as 

where ho is given by eq. (3) and hl is the correction to the profile. With these scalings and 
with the definitions U = VIVO, v = V/Uo ,  one can write to linear order in hl 

We write hl = G ( 8  exp [Pzl and B(t) = Bo exp [,&I where the effective time variable 
r=/Uo(t)/Zdt is proportional to  the distance traveled. The linearized version of the 
continuity equation then becomes 

(8) + hi[q4G - q2GEE] + -[- a 2G + h!(GEEE - q2GE)I = 0. 
a7 aE 

Equation (8) has been derived using a quasi-static approximation so that terms in 
(aZ/at)lUo-Ca"3 have been dropped. Equation (8) must be solved together with the 
appropriate boundary conditions. For (+ CO, we require hl --+ 0, so that h remains 
unchanged and matches the outer solution. In the region near the contact line, a 
linearization of the boundary condition h(&, <, t )  + 0 implies that hl(€, t )  + B(t) ah,/at: as 
E +  0. In principle, more precise boundary conditions are necessary to match the solution to 
the prewetting film or the slip-region profile; however, as shown below, these conditions for 
hl are unnecessary to find the growth rate of the instability at small q. 

To demonstrate that the profile is unstable, we solve eq. (8) in the long-wavelength limit. 
Noting that only even powers of q appear in the equation, we write G(E)= 
= &(go + q2g1(t) . . .) and p(q) = p1 q2 + . . . . The zeroth-order equation is 

The solution consistent with the boundary conditions is go = Bo aholaE which represents a 
simple translation of the interface. Since aho/aE+ 0 as E +  m, the translation affects the 
profile only in the vicinity of the contact line. We note that this is not a proper eigenfunction 
of a wedge-shaped profile, where aho/aE remains finite as E +  03. 

The equation to order 8 is 

Integrating once from E +  CO to E +  0 and using the boundary conditions gl + 0 as F-+ 0 and 
(-.a, one finds 

where the last term in eq. (10) is obtained from eq. (3). Equation (10) is the integral in the 2 
direction of the divergence of the flux obtained by displacing the origin of the unperturbed 
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profile, ho, by Bo cos(q0. The integrand in eq. (10) vanishes when b+ 1, since the 
instability arises from the flows in the capillary region only and does not depend on the total 
length of the system; however, this analysis only holds when xN >> 1 .  In ref. [7], the initial 
conditions do not necessarily satisfy this condition, and the profile may be stable until the 
film has advanced a distance xN comparable to I, when HN - A l l .  Using I = HN(3Cu)-lB with 
HN - A l l ,  and resolving for I, one finds that the value of 1 at which the instability occurs is 
proportional to (.AL2)ll4, with L2 = (dpg sin a) ,  in agreement with the results of ref. [71. We 
note, however, that this dependence on A is an artifact of the initial conditions. The analysis 
presented here focuses on the asymptotic profile in the inner region. The predicted finger 
wavelength depends only on the film thickness and the capillary number and is independent 
of the cross-sectional area, as is physically reasonable for an instability of the capillary 
region. Experiments which constrain the film thickness, or which have initial conditions 
where HN/l  << 1, should confirm these predictions. 

In fig. 3, we present the results [12] of a numerical solution of eq. (8) which has been 
modified to include the terms of order b which account for the matching to the thin film. The 
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Fig. 3. - Eigenvalue, p ,  as a function of wavevector, q. Positive values of ,B indicate unstable modes. 
The inset shows logp vs. log q for values of b = lo-’ (0) and (0). The solid lines show the 
prediction of eq. (10). 

plot shows the eigenvalue ,!4 as a function of the wave vector, q. Also shown is the prediction 
of eq. (10) (calculated with the numerical solution for ho from eq. (3 ) )  which is in good 
agreement with the numerical results for small values of q. The detailed p(q) shows a slow 
(logarithmic) dependence on b. The profile is unstable for q S 0.9 and the maximum growth 
rate occurs for q = 0.45. Thus, the predicted wavelength of the most amplified wave is given 
by A = (Zdq) 1 = 141. Huppert fit his experimental data (cf. his eq. (13) with A = 2HNxN/3)  
with A = 7.51(2~~/3A’~)~”. From his fig. 3, xNIAln appears to be approximately 20 at the 
onset of the instability which gives A = 181. Considering the uncertainty in this procedure for 
estimating the value of HN in the experiments, the agreement between theory and 
experiment is surprisingly good. 

One can apply a similar analysis to the situation of a rotating drop with a free surface. In 
the absence of surface tension, the rotation of a drop of size R(t) with angular velocity o 
results in an averaged radial velocity, dRldt w2 H 2  R. Using conservation of volume then 
gives that the height decreases in time as HN - t-l12, where HN is the film thickness. The 
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radius R(t) - P4 corresponds to xN(t) in the gravity problem. As before, surface tension 
smooths the profile near the contact line over a distance 1 defined in eq. (6), with the result 
that 1 - H&@, if terms of order IIR can be neglected. The calculation of the instability then 
proceeds as in the gravity case. These same ideas should also apply to other systems where a 
fluid with a contact line is driven by a body force or a surface shear stress (e.g., air flowing 
over a liquid layer) and similar instabilities should be observed. 

* * *  
The authors are grateful to H. HUPPERT, F. MELO, J. STOKES and L. SCHWARTZ for 

useful discussions. 
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