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Abstract

Recent experiments on phase separation in quenched binary liquid mixtures confined between closely spaced quartz
surfaces have uncovered that the growth of domains near the surfaces is considerably faster than the growth of
domains in the bulk. While the domains in the bulk coarsen in time as t'?, those near the surfaces coarsen as ¢,
where o ranges from about 1.1 to 1.5 depending on the quench depth. Though it has yet to be determined whether
this accelerated growth corresponds to the domains containing the more wetting or less wetting phase, it seems clear
that both surface forces and reduced dimensionality can affect growth near a surface. To focus on the effect of
dimensionality, we have developed a simplified model for the two-dimensional growth of a wetting domain. The model
describes the wetting domain as a circular disk which remains at constant thickness and is fed by the diffusion of
species from a three-dimensional supersaturated mixture. Numerical solution of the diffusion equation reveals that the
radjus of the disk increases linearly in time when the concentration field surrounding the disk equilibrates faster than
the disk grows. At long times, however, when the concentration field cannot equilibrate at the rate of disk growth, the
disk radius increases exponentially in time. Including the effect of other disks competing for the bulk species, as well
as loosening the restriction of constant thickness, will slow the exponential growth, but the transition from linear to
faster-than-linear growth will still occur. We draw favorable comparison between our theoretical results and
experimental findings for both the growth at small quenches and the transition from linear to faster growth,
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1. Introduction of the species in the mixture, T is the temperature,
p is the pressure and g is the chemical potential.

During the last 20 years, metallurgists have been The time evolution of such an unstable system
intrigued with the possibility of predicting the undergoing a temperature quench can be described
growth rates and structure factors which are mea- by the decay of an unstable state into two distinct
sured experimentally for phase-separating binary phases which evolve by diffusion into macroscopic

domains. In contrast to the decay of metastable
states, no activation energy is needed for an unsta-
ble state to begin phase-separating into two distinct
phases, and any infinitesimally small, long-wave-
length fluctuation in the concentration can initiate
the decay. This type of phase separation is called
* Corresponding author. spinodal decomposition.

fluid mixtures quenched into the thermodynami-
cally unstable regime. This regime is characterized
by the region in phase space (c,T) for which
(Bu/dc)y,, < 0, where c is the concentration of one
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Transmission electron micrographs of many
binary systems undergoing spinodal decomposi-
tion reveal a highly interconnected bicontinuous
structure in the bulk. When this structure is probed
by X-ray, light or neutron scattering, one typically
finds a broad peak developing in S(q,t), the scatter-
ing intensity. As time evolves, this peak sharpens
at some wavevector which we denote g, (1), all
the while increasing its magnitude while q,,,.(t)
shifts toward smaller values. This development of
a narrow peak signals the evolution of a single
characteristic length scale, 2n/g,...(t), associated
with the distance between interfaces separating the
two distinct phases. Equivalently, for equal volume
fractions, this characteristic length scale reflects the
typical size of the growing domains [1].

A significant body of work on both the structure
factor and the kinetics of binary systems under-
going spinodal decomposition has developed since
the first experimental observations. Comprehensive
reviews were presented by Skripov and Skripov
[2] and Gunton et al. [3]. Given the good
agreement between theoretical predictions and
experimental findings for the case of simple binary
fluids in bulk, more recent work on spinodal
decomposition has focused instead on either the
behavior of macromolecular mixtures instead of
simple fluids, or on the effect of confinement.
Measurements of the phase separation process near
the critical point are often hampered by the very
fast dynamics in simple binary mixtures; many
experiments have therefore been restricted to beha-
vior at late stages or at shallow quenches.
Polymeric blends offer the possibility of investigat-
ing the very early stages of phase separation since
the dynamics are considerably slowed down. The
effective diffusion constant for a polymer with
N segments scales as 1/N? times the diffusion
constant for simple binary liquid mixtures [4].
Even for deep quenches, one can therefore conve-
niently study the early and intermediate stages of
phase separation [5].

Experiments in which binary mixtures are con-
fined between closely spaced walls are designed to
probe the possible effects of nearby walls on the
kinetics of phase separation. The walls can affect
the dynamics in two ways — through surface forces
which can enhance or retard the growth of domains

and through the geometrical constraint preventing
growth perpendicular to the solid surface. Cahn
[6] originally analyzed the equilibrium situation
for an unstable binary mixture phase-separating
near a wall. He predicted that close to the critical
point, one of the phases will preferentially wet the
nearby wall with a macroscopic layer. Though this
last stage prediction has been experimentally veri-
fied in a number of different systems, the early
stages involving the kinetics of growth of this
wetting layer have largely remained unexplored.
Several interesting experiments have been con-
ducted over the past few years to investigate pre-
cisely these effects of a nearby wall on the spinodal
decomposition process. We discuss these particular
experiments in more detail below since they are
the benchmark for our theoretical work.

We are aware of at least three different experi-
ments designed to isolate the effect of nearby
surfaces on the process of spinodal decomposition
[7-11]. The studies by Guenoun et al. [7] were
the first to establish exponents different from 1/3
(early stages) or 1 (late stages) for the temporal
growth of domains near a surface. Direct visual
observations of the phase separation process, made
possible by the fact that light is scattered by the
interfaces perpendicular to the plane of the image,
gives optical confirmation of a remarkable layering
of anisotropic structures growing near the walls.
These elongated domains appear between a thin
wetting layer and the bulk and seem to contain a
preponderance of the non-wetting phase. Guenoun
et al. measured the average domain separation,
both parallel and perpendicular to the surface, and
converted to appropriately scaled wavelengths. By
the time the elongated domains appear, the bulk
domains are measured to be growing with an
exponent close to unity. This is the expected expo-
nent for the late stages of spinodal decomposition,
during which the early diffusion-driven growth,
characterized by a growth exponent of 1/3, gives
way to hydrodynamic effects and growth by capil-
lary flow. In this late-stage regime, it was reported
that the domains parallel to the wall grow with an
exponent of 0.64 +0.15, while those in the bulk
undergo linear growth.

The next group of experiments along these lines
was performed by Cumming and co-workers
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[8~10]. In contrast to the slower than expected
exponents measured by Guenoun et al., these later
investigations revealed surprisingly fast growth of
surface domains. The light scattering studies on
both polymer blends [8] and binary fluid mixtures
[9] have uncovered two peaks in the scattering
intensity S(g,t): one peak evolving very quickly at
short times starting from g, =6.8 pm™*, and
another slower peak evolving after 1000s. Both
peaks smoothly move toward smaller wavevectors
in time, suggesting the growth of surface and bulk
structures. Plotting these two peak positions,
Imax(t), as a function of time clearly shows that
the growth of domains is governed by two different
power laws. For mixtures at critical composition,
the growth of domains in the bulk is controlled by
the usual diffusion-driven dynamics, which lead to
an average domain size that scales as Lg(7) =
21/ (t) oc £, where ¢ is time. In contrast, the
average domain size near the surface, Lg, scales as
t*, where o ranges from 1.1 to 1.5 as the quench
depth increases. Since one cannot neatly separate
the effects due to surface attraction or repulsion
from the effects of dimensionality, the physical
origin of the fast signal remains unclear. By the
effects of dimensionality, we mean the differences
that arise because growth along a surface is two-
dimensional, whereas growth in a bulk liquid is
generally three-dimensional.

Bodensohn and Goldburg [11] did experiments
in which they observed isolated, straight channels
of one phase connecting layers of that phase that
had wetted two closely spaced glass plates. The
dynamics that they measured differed from the
results of both Guenoun et al. [7] and Wiltzius,
Cumming and co-workers [8-107], which is not
surprising because the morphology in their system
was quite different. In this study we did not attempt
to interpret the results of Bodensohn and
Goldburg; rather, we aimed to develop a theory
for the growth of domains on a single surface in
the absence of channelling.

Two explanations have been proposed to explain
the differences in the results reported by Guenoun
et al. [7] and those reported by Wiltzius, Cumming
and co-workers [8-10]. The discrepancy might
arise from the fact that the latter experiments
probed the surface growth at shorter reduced times

(i.e. time rescaled by &2/D, where ¢ is the fluid
correlation length and D is the mutual diffusion
constant) than in the Guenoun et al. experiments.
A different mechanism might be operable at longer
times, leading to the slower surface growth
observed by Guenoun et al. Another explanation
for the discrepancy involves the limited data set
collected manually from the video images taken
by Guenoun et al. The published data for the
surface wavevector, ¢,,..(t), seem to contain two
slopes that have been averaged together. The sug-
gestion proposed by Troian [12] is that a larger
data set would have weighted the averaged surface
exponent closer to —3/2 (the slope associated with
physical coalescence of surface domains), bringing
the earlier measured values in line with the later
measurements of Guenoun et al. In either case,
these two experiments, as well as those carried out
in thin capillary tubes by Bodensohn and Goldburg
[117, establish that a nearby surface can strongly
influence the kinetics of spinodal decomposition.
One of us [12] has investigated the conse-
quences of a model for which the fast signal
corresponds to the growth of non-wetting domains
trapped near the solid surface. By a combination
of domain coalescence and enhanced diffusion due
to the geometric constraint of growth near a wall,
it was suggested that the exponent associated with
the non-wetting domains near a surface can achieve
values much higher than 1/3, up to values of 1.5,
for very deep quenches. The argument presented
in that work shows that coalescence of domains
near a surface can effectively triple the exponent
associated with individual domain growth, but it
fails to be valid in the limit that the surface domains
grow only in two dimensions. There is not yet
enough experimental evidence to decide whether
the domains giving rise to the fast signal are three-
dimensional domains, with large aspect ratios
whose volume can be characterized by one parame-
ter only (e.g. the radius R(t)), or whether they are
truly two-dimensional disks of constant thickness
growing along a wall. Having explored the case of
the diffusive growth of non-wetting, three-dimen-
sional domains undergoing coalescence near a
surface, we decided to investigate the consequences
of a truly diffusive model in which the domains
prefer the confining solid surface and assume a
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disk-like configuration at that wall. Before discuss-
ing the model, we describe some preliminary exper-
imental evidence which suggests that the growing
domains may in fact remain disklike and only
grow laterally, all the while maintaining a fixed
thickness.

The morphology of domain growth during
spinodal decomposition is known to become self-
similar in time. This characteristic gives rise to
the familiar dynamic scaling for bulk scattering
data: when the scattered wavevectors, g(t), are
scaled by ¢n..(?), the structure function assumes
a universal shape, F[q/qu.(t)], such that
S(a,t) € Gmax ~“(1)F [4/qmax(t)], where d represents
the dimensionality of the scattering structure
[13,14]. This function F is called the Furukawa
function and its form has been numerically eval-
uated for both dilute and concentrated mixtures.
If one assumes that the growth process with walls
present still preserves this characteristic of self-
similarity for each of the two modes, then one
should expect to find that g,,.(t) scales as
[S(gmaxst)] ™" for each peak in the scattering data.
Fig. 3 of Ref. [8] shows one such plot for a particu-
lar quench (the quench depth was not specified).
The slower mode has a slope of —1/3, indicating
three-dimensional scattering objects, while the
f[aster mode has a slope of —1/2, presumably
reflecting scattering from two-dimensional struc-
tures. One would need to repeat many such meas-
urements to establish a robust correlation
confirming that the fast mode derives from the
growth of a two-dimensional structure, since the
curve-fitting procedures used to extract g,,,,(¢) and
S(gmax,t) involve five-parameter fits and are subject
to interpretation. In particular, the curve-fitting
procedure in the bulk assumes a Furukawa form
for the function F, while the fast mode peak is
apparently only fit with a Gaussian function [9].

Despite the lack of a definitive correlation
between the fast mode and two-dimensional struc-
tures, it is educationally valuable to explore the
diffusive growth of fixed-thickness disks near a
surface. The goal of this study is to see whether a
model consisting of a fixed-thickness disk growing
in two dimensions (as matter diffuses in three
dimensions from a supersaturated solution) can
predict growth exponents larger than the usual 1/3

exponent characteristic of diffusive growth in the
bulk. The 1/3 exponent is a signature of diffusive
isotropic growth. Since the presence of a wall
breaks any such isotropy, we expect to find larger
exponents for the radial growth of the disks. The
question we are posing, therefore, is “Can the effect
of dimensionality (i.e. two-dimensional or three-
dimensional growth) significantly increase the
growth exponent associated with diffusion?”.

2. Anidealized model

To understand better the dynamics that occur
during phase separation along a surface, we analyze
an idealized model of the diffusive process. Our
approximation of the real system seems to predict
scaling exponents and relationships for the growth
rates which are consistent with the experimental
results described earlier. Qur analysis therefore
seems a useful first step in the development of a
complete theory. We choose in this work to concen-
trate on the temporal scaling laws and therefore
study only the appropriate transport equations.
The physical chemistry affecting the growth pro-
cess, and in particular the effect of surface forces
on the phase separation, will be considered in
later work.

Ignoring any cooperative effect between
domains, we first focus on one wetting domain by
considering an isolated circular disk resting on a
surface and surrounded by a semi-infinite reservoir
of the second phase. We assume that radial growth
occurs while the disk remains at a fixed thickness.
We expect that the thickness of the disk will be set
by the net balance of attractive forces between the
wetting domain, the surrounding liquid phase, and
the solid surface. We implicitly assume that the
spreading process is fast enough to allow the disk
to maintain this constant thickness as matter
diffuses to it, i.e. the details of the spreading process
do not retard the growth by diffusion. In this sense,
we refer to the growing domain as a wetting
domain.

To model the diffusion of species in the binary
mixture to the wetting disk, we assume that Fick’s
law with a constant diffusivity D suffices to describe
the flux. The interactions between the liquid phases
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and the surface alters the chemical potential gradi-
ents near the surface and thereby renders the real
situation more complicated, but we nonetheless
expect our simplified description to provide reason-
able results for the scaling of the domain size with
time. For simplicity, we treat the mass transport
as if it were diffusion of only one component, even
though the phase separation obviously involves
two or more species. In their seminal study of
phase separation in bulk liquids, Lifshitz and
Slyozov proceeded similarly and still obtained
meaningful results [15].

Since the disk thickness is constant, the concen-
tration of the diffusing species directly outside the
disk should be constant if the interface is at local
thermodynamic equilibrium, which we expect to
be true after distinct phases appear. Also, far from
the disk, the concentration of the diffusing species
should become constant. Consequently, the diffu-
sion will be driven by the difference between the
far-field concentration and the concentration
directly outside the disk. This difference is the
supersaturation, but it is the supersaturation for a
wetting domain and therefore will not necessarily
equal the bulk supersaturation.

Fig. 1 depicts the various elements of our model
problem. We denote the radius of the disk by R(t),
the thickness by h, and the concentration by ¢.
Also, we show the r and z directions of the
polar coordinate system positioned at the center
of the disk. In the remainder of this article, we

é=c_ at |x|-e

h=constant R()
h«R(@)

Fig. 1. Schematic diagram of a wetting disk growing radially
along a macroscopic surface.

refer to the dimensionless concentration (c=
(€ = e )(co, — o) to simplify the analysis; we also
have scaled all lengths with the initial radius Ry =
R(t=0) and all times by R%/D.

By assumption the dimensionless concentration
¢ outside the disk satisfies the diffusion equation

defpt=V%¢ 0<z<w 0sr<m (1)

Note that Eq. (1) ignores the small thickness of
the growing disk . At the disk surface, which now
corresponds to z =0 and 0 < r < R(t), the concen-
tration ¢ equals —1, giving the boundary condi-
tion 1:

c=—1 at z=0,0<r < R(z) (2)

where R(t) now refers to the dimensionless radius
of the disk. Elsewhere along the surface the flux
vanishes, yielding the boundary condition 2:

dc/oz =0 atz=0,r>R(t) (3)

Far from the disk the concentration is uniform in
our model, and the actual value of the far-field
concentration merely acts as an additive constant.
For convenience we therefore set the far-field
dimensionless concentration to be zero by our
choice of a dimensionless concentration, providing
the boundary condition 3:

c=0 at|x|-ow (4)

We still need to specify the initial state of the
system in order to calculate c(x,r), the concen-
tration at any point x and any time t. Since we
are mainly interested in the behavior after the
nucleation of the wetting phase, we do not expect
the choice of an initial state to be crucial. Hence,
we simply specify the concentration to equal the
far-field value everywhere in space at time t<0
(initial condition):

e=0 att<0andall |x| (5)

Egs. (1)~(5) describe the spatial and temporal
behavior of the concentration, given R(t); conse-
quently, a mass balance specifying R(z) closes this
set of equations. For a disk having an internal
concentration ¢, and a constant thickness h, the
appropriate equation for the evolution of R(t)
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assuming cylindrical symmetry is

R

ZRdR—FZ ﬁ'd' 6
T T T 6.7.' ! (6)
0

The parameter I, defined by I"= (¢, — ¢o)Ro/calt,
sets the magnitude of the dimensionless speed
dR/dt. The left-hand side of Eq. (6) describes the
increase in the mass of the disk as it grows, and
the right-hand side describes the diffusive flux to
the disk. To solve Egs. (1)-(6) for R(t) and c(x,t),
we performed boundary-element calculations. As
discussed in the next section, the results compare
rather well with the experimental data.

Despite favorable predictions for the disk growth
rate using only a simple diffusive model, one should
address the issue of collisions between growing
disks because such collisions and the subsequent
coalescence might produce significant enhance-
ments in the growth rates, possibly resulting in a
large change of the scaling for R as a function of
t. This might happen because two disks that collide
while growing on the surface would form a larger
disk in much less time than either would have
needed to form the larger disk in isolation.

We made a first attempt at predicting the role
of collisions by numerically solving the following
approximate balance for a population of colliding
disks:

o 9 dR
n + R l:!#(R,t) Y (R,t)}

=§ JJ O(R1.R,)O[R — (R + R3)'?]

X YRyt (Ry,t) dR; dR,

— (R,t) JQ(R,RLW(RM) dR, (7)
where
O(R,,R,) = 2n(R, + R )(ﬂ+dR2) (8)
13432 e, 1 2 dt dt

This population balance describes the evolution of
W(R,t), which is the probability distribution func-
tion quantifying the number of domains per unit

area with radius falling between R and R +dR.
The function § is the Dirac delta function, and in
Eq. (7) it serves to describe an instantaneous fusion
of two disks with radii R, and R, into one larger
disk with radius (R? + R%)Y? upon collision. The
dR/dt terms represent the rate at which R increases
as a function of R and ¢. The rate of collisions is
approximated as Q(R, R} (R,)W(R;) where Q
is given by Eq.(8), which ignores correlations
between neighboring domains. By solving Eq. (7)
for i, using the dR/dt results for an isolated disk,
and calculating

(R = JR: ¥(Ry,t) dR, 9)

as a function of time, we estimate the enhancement
of the growth rates arising from collisions.

The next section summarizes our theoretical
results for isolated disks, beginning with a scaling
analysis and following with the numerical results.
We then discuss our modeling of the rate enhance-
ment arising from collisions. Favorable comparison
is drawn between our predictions and recent
experimental results, although future theoretical
investigations are suggested to draw stronger
comparisons.

3. Discussion of theoretical results
3.1. Scaling behavior of R(t)

Before presenting our numerical results, we dis-
cuss how one can understand the behavior of R(r)
by carefully studying the scaling behavior of
Egs. (1)-(6).

First, note that the choice of Eq. (5) as an initial
condition causes the concentration gradients, and
hence the flux, to be large near the disk at small
times. However, this behavior is artificial in the
sense that Eq.(5) does not represent the true
physics of nucleation. If the disk radius does not
change much over the times 0 <t <1, then this
initial transient behavior is unimportant in our
analysis of the growth at longer times because the
concentration gradients will spread over a length
scale comparable to the disk size by t=1.
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Consequently, the behavior at ¢t > 1 will be inde-
pendent of the activity at times ¢ < 1. Since we are
not trying to understand the short-time behavior
in this study, we need only recognize that initial
transients will exist but will disappear quickly
except in cases for which the growth is very rapid.

Once the initial transients have died away, the
concentration field will behave in a quasi-steady
manner if the disk grows sufficiently slowly. In this
regime, the concentration gradients can relax more
quickly than the disk grows, which results in the
concentration obeying

Vie=0 (10)

Recall that the Green’s function for Eq. (10) decays
as p~*, where p is the distance from a point source.
Since the disk acts as a sink by incorporating
matter from the surrounding phase as it grows, the
concentration gradients near the disk will scale as
1/R(t) in this regime. From Eq. (6) it follows that
the rate of change of R(z) is constant, i.e.

dR/dtoc I (11)

Thus the disk radius grows linearly in time during
the quasi-steady regime, which is very close to the
growth observed by Shi et al. [9] at small
quenches.

In order for the growth to be quasi-steady, the
rate of change of ¢ should satisfy the constraint

de dc 1
T o~ o2 (12)
ot R* R

where dc is the dimensionless concentration
difference between the disk and the surrounding
liquid far away. Our estimate for the magnitude of

dc/ot is
dc _AdcdR _1dR

—_—— A —

(13)

and with this estimate the restriction given by
Eq. (12) becomes

dR
R—«1 14
T (14)
Together with Eq. (11), this constraint implies that
the growth will be quasi-steady when R <« 1/

given that t>1 also holds as required for the
influence of the early transients to be negligible.

When R(dR/dt) becomes comparable to unity,
the concentration gradients should no longer be
able to adjust faster than the wetting domains
grow. In terms of dimensional quantities, this
transition should occur when

dR o

dr ~ (15)
Thus we can test our theory by comparing mea-
sured values of R(dR/dt) with reasonable estimates
of the effective diffusivity D.

Once R becomes much larger than 1/7] the
radius increases much more quickly than the con-
centration gradients can relax due to diffusion.
This causes the gradient dc/dz in Eq.(6) to be
approximately constant over the characteristic time
scale for changes in R. Consequently, we expect
exponential growth described by

R ~exp B r(%) :} (16)

In the work by Shi et al. [9] on guaiacol-glycerol-
water mixtures, a transition from linear growth to
faster growth is indeed reported, but exponential
arowth is not observed.

The idea of wetting domains growing exponen-
tially in time when they accumulate matter solely
from a diffusion process seems remarkable, but our
analysis does suggest that exponential growth will
occur if nothing else slows the spreading. Our
original model does assume that the disk thickness
remains constant, which means the disk instantane-
ously adjusts its radius as matter diffuses toward
it. At some point, of course, the driving force for
wetting cannot act that quickly, and the hydro-
dynamics of the wetting will cause the growth to
be slower than Eq. (16) suggests. In the future we
will investigate this aspect of the problem.

3.2. Numerical analysis of the diffusion-limited
growth

To solve Egs. (1)-(6) numerically and to verify
the above statements about the behavior of R(z),
we developed a boundary element algorithm. The
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formulation of the algorithm begins with the integ-
ral equation for ¢(x,t) based on the Green’s function
for Eq.(1). This integral equation describes the
concentration produced by point sinks distributed
over a circle of radius R(t), and when the flux is
azimuthally symmetric, the integral equation
becomes

] R(r)

c{x,f)=§ J J F(rg,t)

=0 ro=0
exp[—(r? + g + z2)/4(t — )]
X
(t—1)3?2

rr,
x Iy [Z(I—ETJ ro dro de (17)

The function F(ro,t) represents the cylindrically
symmetric strength of the point sinks per unit area;
in other words, it equals the dimensionless flux at
the radius r, along the disk and at the time . The
scaling factor used to make F dimensionless is
ncgD/R,. Also, the function I, is a modified Bessel
function [16]. As Eq. (17) states, the concentration
at any point x and any time t depends on the
value of the flux F at all locations on the disk and
at all previous times, although the contribution
from previous times becomes small as the time
delay becomes large.
Upon defining the function G(1,rp,t,7) to be

exp[—(? +r3)/4(t — 1)]
(t—1)p?

<to] 32 | (19)

one can write Eq. (17) at locations along the disk,
where Eq. (3) holds, as

G(rro.t,7) =

t  R(r)
—~1= \/T; J. J Fro,1}G(rrg,t,7) drg dr (19)
=0 rp=0

Simultaneously solving Eqs. (6) and (19) for the
functions F and R(r) provides not only R(t) but
also the means to calculate ¢(x,t).

In terms of F, Eq. (6) for dR/dt becomes

R(1)

dR T
R _cE = — 5 I F(i"o,f)f'o d?'g (20)

rg=0
since the concentration gradient and the flux are
related by the equation
dc = F
dz 2 =0
The factor of 2 arises because the disk only absorbs
matter from the half space on one side of the
surface; for a disk in infinite space, the gradients
on either side of the disk at any given » would sum
to k.

We solve for the functions F and R(t) which
satisfy Egs. (19) and (20) by discretizing the disk
into elements and approximating F within each
element. The elements are defined by

0<r<fiR(), iR <r< fHR(), ...
In-1R(E) <r<R(v) (22)

where 0 < f, < fy < ... < fy_, are constants. These

elements are circular rings. We choose f; = (i/N )2

in order to have elements with equal areas, but

one can just as easily choose other discretizations.
Next, we approximate F(r;7) as

F(rt)=F()  for fiyR(x) <r< fiR(?) (23)

where it is understood that fo=0 and f,=1,
leaving N functions of 7 to be determined. We
further specify the functions Fi(z) to be

F(t)=e,
Fi(x)=e;0; +e,;-,0;

when 0<7<1,
(24)
when 7;,_; < t<7;

where ¢;; are unknown constants and 0, and 6,
are the functions

T
=1--=t (25)

T

9.

J1

and

L Sy o AW A
p=——"———]||—-1 26
% ( T Tj-1 )(T ) 5

Eqgs. (24)-(26) give an approximation for F;(z) that
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is continuous in 7, and the forms for 8; and 0},
allow for the expected divergence at t = 0. Egs. (25)
and (26) also allow F to follow both the
For1/Roc1/z scaling expected during the quasi-
steady period and the constant F scaling expected
during the period of exponential growth.

With the above discretization, the problem
reduces to specifying the number of elements N,
choosing the time intervals defined by t; (j=
1,2,...), and solving for the constants e;;. Since
there are N different ¢;; constants for each time
interval 7;_, <7 <1, we calculate these N values
by requiring that Eq.(19) be exactly satisfied at
the middle of each element when ¢ = 7;. The numer-
ical procedure consists of solving for e, by
performing calculations for t=r1,, followed by
successive calculations at t = 1,, 13, ... to determine
€, €3, ...fori=1,2,3,... N. When solving Eq. (19)
for e;;, one must account for the singularities in
G(nroit,7), which we do by analytically removing
the singularities before performing any numerical
integrations.

Solving for the N values of e;; at ¢ = 1; requires
an iterative scheme because one does not know
R(t) for 7;_; <t < 7; until one knows the values of
¢;;. Thus, for cach time interval we guess R(t),
calculate ¢;; for i=1,... N, calculate a new guess
of R(t) from Eq. (20), and repeat the process until
the e¢;; values converge. Typically, the values con-
verge in two or three iterations.

The boundary element algorithm described
above does not require any specific choices for the
times t; or the values of f;, which is an important
strength of the method. Although we did not
experiment much with different choices for f;, we
did include in our code an automatic adjustment
for the step size in t. Without this adjustment,
covering several orders of magnitude in R(t) would
require unreasonably large amounts of CPU time.
At each time step, if the radius R(z) did not change
by more than a specified percentage, typically
about 1%, then the time step was automatically
doubled as long as it still satisfied At <1, R*(t).
Likewise, if R(t) increased too much, then 4t was
reduced by a factor of 2. As for the number of
elements, we found acceptable convergence for
N = 10. We implemented the above algorithm on
a CRAY-XMP computer.

3.3. Numerical results

Figs. 2 and 3 illustrate the calculated behavior
of R(t) vs. t for the growth of a wetting disk when
I"=0.1. Specifically, Fig. 2 shows the quasi-steady
regime during which R increases linearly with
respect to t; conversely, the plot of InR vs. t in
Fig. 3 clearly shows the exponential growth at

12 T T T T

£

D L 2 1 1 1 1 L 1 1

0 20 40 60 80 100
t

Fig. 2. Numerical results for R(t) vs. t when I'=0.1.
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Fig. 3. Numerical results for In R(t) vs. t when I"=0.1.
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longer times. As expected, the initial transient dies
away after short times, and the transition from
linear to exponential growth occurs at ¢= 100.
From Eqgs. (11)—(14), the cross-over from linear
to exponential growth should occur when
R(dR/dt)~ 1 or tec I'% For the value of I chosen,
we obtain excellent agreement with our scaling
prediction. All the numerical results agree with our
earlier scaling analysis of the behavior of R(1).

Given the function F determined in the
boundary-element calculations, one can calculate
concentrations at any (x,t) by applying Eq. (17).
Since the integrand is singular at the disk surface,
calculations of ¢(x,t) near the disk require special
care in the evaluation of the associated integrals.
As when solving for F, we analytically isolate the
singularity before performing the integration to
take care of this problem.

Fig. 4 is a plot of the concentration near the
disk at t = 1.0. The figure illustrates ¢ as a function
of z/R(t) for r/R(t)=0.1, 0.5 and 0.95, where r is
the radial coordinate in Fig. 1. Figs. 5 and 6 show
similar plots for t = 5.0 and ¢t = 20.0, at which times
we expect the disk to undergo a quasi-steady
growth. Comparison of these two figures reveals
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Fig. 4. Numerical results for the dimensionless concentration
c vs. z/R(t) at t=10, when I"=0.1. The curves are for
various radial positions: @, r/R(t)=0.1; H, r/R(t)=0.5;
A, r/R(1)=0.95.
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Fig. 5. Numerical results for the dimensionless concentration
¢ vs. z/R(t) at t=50, when I'=0.1. The curves are for
various radial positions: @, r/R(1)=0.1; H, r/R(1)=0.5;
A, 7/R(1)=0095.
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Fig. 6. Numerical results for the dimensionless concentration
¢ vs. z/R(t) at t=20.0, when I'=0.1. The curves are for
various radial positions: @, r/R(t)=0.1; H, r/R(t)=0.5;
A, r/R(1)=095.

the concentration curves at the different times for
any one r/R(t) to be nearly superimposable; there-
fore scaling lengths by R(t) collapses the concen-
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tration profiles for different times. This result is
exactly what one should find during quasi-steady
processes. The curves do not match those in Fig. 4
because the initial transient behavior still has some
effect at t = 1.0.

Finally, Fig. 7 shows the concentrations at t =
400. The disk grows very rapidly at this time, and
the concentration field cannot adjust at the same
rate. Consequently, the concentration curves
become increasingly steeper when plotted as a
function of z/R(t) because R(t) becomes so large.
The flux to the disk, F(nt), changes rapidly at
small times but varies only slowly at t > 200, as
Fig. 8 depicts for several values of r/R(t). As dis-
cussed previously, the exponential growth at later
times arises because F(rt) does not vary apprecia-
bly in time.

We also performed calculations for other values
of I In all cases, the results were consistent with
the discussion above. For values of I" larger than
0.1, the extent of the linear regime decreases, and
when [ is larger than about 0.5, one cannot
distinguish a linear regime. Conversely, for values
of I' smaller than 0.1, the extent of the linear
regime increases in the manner predicted by our
scaling analysis.
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Fig. 7. Numerical results for the dimensionless concentration ¢
vs. z/R(t) at t =400.0, when "= 0.1. The curves are for various
radial positions: @, r/R(¢)=0.1; W, r/R(1)=0.5; A, r/R(f)=
0.95. The lines connecting the points are a guide to the eye.
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Fig. 8. Dimensionless flux F(rt) vs. t when I"=0.1. The curves
from top to bottom are for r/R(t) =0.32, 0.45, 0.78, 0.95 and 1.0.

3.4. Rate enhancement due to collisions

Using our results for dR/dt for an isolated disk,
we now estimate the enhancement of the growth
rate caused by collisions. To do this, we substitute
dR/dt for isolated disks into Eq. (7), solve for i,
and calculate {R) as a function of t. However, we
only consider the linear growth regime because the
exponential growth is already faster than the beha-
vior observed in the experiments. For our purposes,
we arbitrarily choose dR/dt=0.1 for the single
disk result to be used in Eq. (7).

Fig. 9 shows our results for the average radius
{R) as a function of time. Interestingly, the growth
appears to follow Roct™!, which is in excellent
agreement with the experimental data reported by
Shi et al. [9] for small quenches. Upon closer
inspection, however, the actual behavior of R as a
function of ¢ does not strictly follow Roct'!. As
Fig. 10 illustrates, the growth velocity actually
approaches asymptotes at short and long times.
At the short times, the areal coverage is small and
collisions are infrequent, whereas at the longer
times collisions occur quite often. It would be
interesting to test whether the behavior depicted
by Fig. 10 actually occurs in an experiment.



238 F.E. Torres, §.M. Troian/Colloids Surfaces A: Physicochem. Eng. Aspects 89 (1994) 227-239 .

3.5 i

log <R(t)>

2 - -
1.5 -
e J
1’ i 1 P 1
2 25 3 3.5 4 4.5

logt

Fig. 9. Average domain radius ¢{R(¢)) as a function of time
calculated using a population balance that includes the effects
of collisions. The growth appears to follow ¢R(1)) oc £,
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Fig. 10. Plotting the results in Fig. 9 as log(d{R}/dt) vs. log t.

Acquiring this experimental data might be difficult
because dR/dt is more difficult to measure accu-
rately than R, and the predicted change in
log(dR/dt) is not very large.

4. Comparison with experiment

Despite the approximations in our analysis, the
results we obtained agree satisfactorily with pub-
lished experimental results [8-10]. Our model
predicts growth of two-dimensional wetting
domains during phase separation that is much
faster than the growth of domains in a bulk liquid,
and in fact we actually predict what appears to be
Roct™! growth when the diffusion is quasi-steady
and the disks undergo collisions. This behavior is
precisely what Shi et al. [9] report for the growth
at small quenches. Furthermore, video recordings
of the experiments cited above confirm that colli-
sions between surface domains do occur regularly.

At longer times or for deeper quenches, our
theory predicts a transition to an even quicker
growth mode, with the transition occurring when
R(dR/dt)= D, R and dR/dt being the unscaled
radius and velocity, respectively, in this compari-
son. Based on the Wilke-Chang correlation sug-
gested by Reid et al. [17] for calculating the
diffusion constant in a dilute solution, we estimate
a representative molecular diffusion for the experi-
ments of Shi et al. to be D=4 x 1078 cm?s™!. As
shown in Table 1, this value of D does indeed seem
to correspond to the experimentally observed
transition reported by Shi et al. Table 1 shows
representative experimental values of R(dR/dt) as
a function of the measured exponent b in Roc ¢
(see Ref. [97), where we have used the equation

R =2n/q (27)

to estimate R from the reported wavenumbers g.
As the growth changes from Roct'! to Roctls,

Table 1

Relationship between R dR/dt and the kinetic exponent b
Quench t RdR/dr b

(°C) (s) (em*s™Y)

0.011 500 1.1x107° 1.08 +0.02
0.011 1600 44 x107° 1.08 £ 0.02
0.041 100 43x107° 1.1+0.02
0.041 440 2.5x 1078 1.1+0.02
0.126 17 8x107° 1.36 £ 0.06
0.126 78 1.1x 1077 1.36 + 0.06
0.219 235 77 x107% 1.53 +0.08
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the values of R(dR/dt) do seem to change from
being less than D to being equal to or greater
than D,

Within the model and assumptions presented,
we cannot yet explain the R oz t'*> growth which is
observed for the deeper quenches. Our results for
diffusion-limited growth indicate instead that the
length of two-dimensional wetting domains should
grow exponentially in time. Although we have yet
to resolve this difference, our results seem to sug-
gest that some transport mechanism other than
diffusion must become the growth-limiting step
when the wetting domains are large and growing
quickly. Our present view is that a likely rate-
determining process during this late stage regime
is the hydrodynamics of spreading, which is likely
to be dominated by surface forces like van der
Waals attraction. Further studies are needed to
confirm this conjecture. Our results also suggest
that the thickness does not remain constant at
large times or for large quenches unless the growth
is exponential, from which it follows that the two-
dimensional scaling for the scattering should begin
to degrade during the !5 growth.
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Glissement a l’interface de deux ol meres lé erement
poly. g
incompatibles

Frangoise BROCHARD-WYART, Pierre-Gilles de GENNES et Sandra TroiaN

Résumé — Deux polyméres A et B fondus ont une ¢paisseur d'interface e=ax ™Y o a est une |
taille moléculaire et ¥ le paramétre de Flory. Si il n'y a aucun enchevétrement entre A et B, le
frottement entre A et B est faible et de type Rouse — mais avec une viscosité T (¢) dépendant des
échelles spatiales [1]. On peut en fait avoir quelques enchevétrements, de probabililéf=cxp(—N,x)
oil N, est la distance entre enchevétrements dans A ou B massif [2). Ils dominent la friction dés
que N,y <In (N*/N%2), ol N est le nombre de monoméres par chaine. Le régime de Rouse pourrait
avoir des conséquences intéressantes en coextrusion,

Slippage at the interface between two slightly incompatible polymers

Abstract — Two molten polymers A and B have a diffuse interface of thickness e=ay ™' (where a
is a monomer size and ¥ is the Flory parameter). If A and B are not entangled, we expect a weak
Rouse friction—with a viscosity Nple) which is size dependent [1l. We may also have some AB
entanglements, with a probability f=exp (—N,y) (where N, is the munber of monomers per entan-
glement in bulkk A or B) [2). The AB entanglements should suppress the slippage whenever
N,%>In(N*/N32), whete N is the degree of polymerisation. The Rouse regime might have some
interesting rheological consequences for coextrusions.

L. IntTrODUCTION. — L’un de nous a discuté jadis le probléme du glissement d’un
- polymére fondu sur une surface solide [3]. On attend un glissement facile si : (a) le
polymére n’a pas de liaisons spécifiques avec la surface; (b) le polymeére est bien fondu
partout (pas de zone vitreuse ou cristallisée prés de la surface); (¢) la surface n’est pas

trop rugueuse.

Expérimentalement, on n’observe souvent aucun glissement [4]. Toutefois, certaines
observations dans une filiére transparente [5] ou en rhéométrie plan/plan [6] suggérent
un glissement, mais il n’est pas sir que ces observations soient faites dans le régime de
faibles contraintes (o — 0) qui était 'objectif de la référence [3]- TI se peut qu’une couche
de polymére vitreux soit fréquemment présente prés du solide.

Dans la présente Note, nous abordons un cas différent : celui de deux polymeéres
fondus A et B, mis en contact le long d’un plan xy (fig. 1). Ces deux polyméres sont en
général incompatibles, avec un parametre de Flory [7] x> 0. L’épaisseur de Iinterface AR
est alors e=ay "2 (ol g est une taille de monomere) : e est indépendant des nombres
de monoméres par chaine (N,,, Np) pourvu que N1 [8].

Si y est grand, il est clair que les chaines A ne s’enchevétrent pas avec les chaines B,
et on a donc la possibilité d’un glissement important. Ce probléme a été abordé par
Furukawa [9], mais sans apprécier pleinement le réle relatif de la friction de Rouse (sans
enchevétrements) et de la reptation (avec enchevétrements).

Nous reprenons cette discussion, au niveau des lois d’échelle, pour un cas simple et
« symétrique » : les deux polymeéres A, B sont supposés avoir: (a) méme longueur
(NAo=Np=N); (b) méme distance entre enchevétrements (N, <N); (¢) méme viscosité
Na=Tp=n en phase fondue, soit pour un modéle de reptation [10] :

N3
NZ

c

(1) n=m, (N>N,)

Note présentée par Pierre-Gilles de GENNES,

0764-4450/90/03101169 S 2.00 © Académic des Sciences
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Fig. 1

Fig. 1. — L'interface entre deux polyméres fondus (A et B),
soumis 4 un champ de cisaillement simple v, (z).

Fig. 1. — The interface between two molten polymers (A and B),
under conditions of simple shear, with a velocity field v (z).

Fig. 2. — Profil de vitesse en glissement fort :

le gradient est grand dans I'interface.

Fig. 2. — Velocity profile in conditions of strong slippage:

the velocity gradient is steep in the interface.

ol 1, serait en gros la viscosité d'un fluide de monomeres.
La probabilité f d’avoir un enchevétrement AB dans I'interface a été analysée dans la
référence [2] & propos de mesures d’adhésion (dont Iinterprétation microscopique est

plus délicate).

Le résultat central est :

2

f=exp(—N,x)

et montre que f décroit trés vite quand N, est grand.

II. LIMITE SANS ENCHEVETREMENTS. — Le profil de vitesse envisagé est représenté sur la
figure 2. Dans la région interfaciale, on a un trés fort gradient de vitesse ~[V]/(2¢) et
une faible viscosité de Rouse my (). Le produit viscosité x gradient est la contrainte de
cisaillement o, qui est la méme partout :

3)

(4)

dv [v]
O‘= S = e —
n— . Mg ( )2e
On peut exprimer le résultat (3) soit en termes d’un coefficient de friction de la jonction :
o S
== Uy fe)
vl

soit en termes d'une longueur d’extrapolation ( fig. 2) :

(5)

b=e( il —l)ze 1
Nk (€) nr(e)
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Fig. 3. — L'interface AB dans la limite d’enchevétrement faible (N> 1). Seulement quelques boucles
issues de B (lignes continues) parviennent 4 ancrer des chaines A (lignes pointillées).

Fig. 3. — Microscopic representation of the interface in the limit of weak entanglements (N, x> 1):
only a few loops from B (continuous lines) can anchor certain A chains (dotted lines).

Le point crucial est de définir la viscosité de Rouse 1, (e) pour des échelles spatiales (e)
inféricures 4 la taille d’une pelote. Un calcul direct de dissipation [1] montre que :
2

(6) ng(e)zm% (e<Ry)

ce qui satisfait bien aux limites e=a(n —»n,) et e=R,=N"2g(n=n, N).
En reportant I’équation (6) dans (4) et (5), on trouve un (faible) coefficient de friction
— proportionnel 4 e — et une (grande) longueur d’extrapolation de Rouse
3 2 N3
© b~y L By
NZ e N?
Par exemple, si xy=0,1, N=10° N,=10% ¢t =3 A?, on attend by =10 pm. Dans un cas
de ce genre, la rhéologie d'une émulsion AB avec des gouttes plus petites que 10 pm
peut étre profondément modifiée.

III. FRICTION D'UNE JONCTION FAIBLEMENT ENCHEVETREE. — Considérons le demi-espace
occupé par 'un des polyméres (A) (fig. 3). Il y régne une viscosité de systéme
enchevétré . Il est important de réaliser que (contrairement aux viscosités de Rouse), la
viscosité 1 est la méme a toutes les échelles r, méme pour r<R,=N!2g. En effet, on
peut écrire 1) sous toutes la forme n=p Ty ou p=kT/N,a* est un module de plateau
(N,=distance entre enchevétrements) et T, un temps de reptation des chaines. Méme si
la perturbation mécanique qui agit sur les chaines agit seulement sur une petite région r,
les relaxations qu’elle entraine impliquent toute la chaine et le méme temps T,. En termes
de vecteurs d’onde ¢ :

1
n{9)=n(0) (D>9)
ot D=N}"2q est la distance entre enchevétrements [1].

A la surface de la région A sont placés des points d’ancrage de B avec une densité
superficielle v. Nous écrirons : v=v, f, oll v, est la densité de points d’ancrage (AA ou
AB) dans une couche d’épaisseur D (si D<e), ou bien d’épaisseur e (si D>e¢). Clest
surtout le domaine e~D qui sera important dans la discussion. Alors, puisque le nombre
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d’arcs enchevétrés par centimétre cube est p/k T=(N, a®)™!, on attend :
D 1

N,a® aD
Sur chaque point d’ancrage, le milieu B exerce une force ¢ paralléle 4 Ox telle que
vo=0.
Le champ de vitesses v(z) résultant dans le milieu A satisfait 4 Péquation :
®) MV2iv+Vp=¢)8(r—r)

Vo=

ot la somme Y est étendue & tous les points d’ancrage. La pression p est telle que le

1
polymére reste & densité constante (div v=0). La solution de (8) est une superposition
de tenseurs d’Oseen :

v, (1) =Z (PpTap (r—r)

1 r.r
[p(r)= 8o+ 22
ﬁ() 8nnr|: b} rz]

Re))

A longue distance (z>v~%/2), le champ de vitesses décrit un cisaillement uniforme
v, =zG/n. A courte distance, 4 ce contact avec un site d’ancrage (i) de taille D, la vitesse
(moyenne sur les orientations de r—r;) vaut :

. 1 o
10 ~lyi=
(10) v= M= oD
D’oul un coefficient de friction :
c
(1n k=———-=(Cte)vDn
(1/2)[V]

IV. Discussion. — Le coefficient de friction total [déduit des équations @)et (1), a
la forme :

3
(12) 20_p — M [ evalan
[V] lotn, a x”z Nf
On voit que, & N,y grand, le premier terme (friction de Rouse) I'emporte. Ceci reste
vrai tant que : '
N, x> In (N3 N; 21 2in (N* N, %)

Par exemple, avec N=10% et N, =10, il faut N, 7> 10, soit %.>0,1.

Ces considérations peuvent jouer un role dans certains problémes de coextrusions. Si
N, 7 est en dessous de la valeur seuil, la longueur d’extrapolation est égale a by [équation
(7)]. Cette longueur déduite de la faible friction de Rouse, est grande : si by devient
supérieur a 'épaisseur des films de A, on n’aura plus de cisaillement dans ces films.

Note remise le 9 mars 1990, acceptée le 21 mars 1990.
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