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Recent experiments by several groups have uncovered a novel fingering instability in the spreading
of surface active material on a thin liquid film. The mechanism responsible for this instability is yet

to be determined. In an effort to understand this phenomenon and isolate a possible mechanism, we
have investigated the linear stability of a coupled set of equations describing the Marangoni
spreading of a surfactant monolayer on a thin liquid support. The unperturbed flows, which exhibit
simple linear behavior in the film thickness and surfactant concentration, are self-similar solutions
of the first kind for spreading in a rectilinear geometry. The solution of the disturbance equations
determines that the rectilinear base flows are linearly stable. An energy analysis reveals why these
base flows can successfully heal perturbations of all wavenumbers. The details of this analysis
suggest, however, a mechanism by which the spreading can be destabilized. We propose how the
inclusion of additional forces acting on the surfactant coated spreading film might give rise to
regions of adverse mobility gradients known to produce fingering instabilities in other fluid flows.

© 1997 American Institute of Physids$1070-663(197)00112-§

I. INTRODUCTION more regular fingering patterns as shown in Fig. 1. Such
patterns were obtained by gently depositing al 2iroplet of

The spreading of solutions containing surface active mai mM AOT [sodium bist2-ethylhexy) sulfosuccinaté on
terial plays a very significant role in daily life and industry the surface of a clean water film ranging in thickness from 1
ranging from detergency and aerosol delivery of medicatingnm to fractions of a micron. Many common laboratory de-
drugs to lubrication and ink jet printing. In general, a puretergents were found to produce a similar instab#ity.In
liquid film spreading on a dry solid will advance fairly each case, the spreading droplet creates a rapidly growing
slowly unless driven by external forces like gravity, centrifu- disk with a thickened front that advances with a speed on the
gation, or surface shear. A surface active film distributed ororder of cm/s. Far behind this advancing rim, there develops
a thin liquid support, however, will cause spontaneous an@ sharp depression in liquid height near the location of the
very rapid spreading when the surface material creates renitial deposition point. Slender fingers appear and grow rap-
gions of lower surface tension than the supporting liquid.idly into this thinned region undergoing spreading, shielding,
Controlling the rate and extent of such spreading requires and tip-splitting, processes observed in other fluid flow insta-
thorough understanding of the so-called Marangoni flowbilities driven by completely different forcésDuring the
Typical coating solutions often contain surface active agentpast few years several other experimental groups have since
like hydrocarbon solvents, phospholipids, surfactants oronfirmed the development of this fingering instability dur-
dyes. Not only do these substances significantly lower théng the spreading of insoluble and soluble surfactant films on
surface tension of the supporting liquid but, depending ora thin water support®~’
their local concentration, will create gradients in surface ten-  Troian et al? detected the instability for surfactant con-
sion along the air-liquid interface. centrations both above and below the CMC. More impor-

While conducting experiments on the radial advance otantly, the fingering patterns never appeared on perfectly dry
small water droplets containing various surfactants on thesubstrates. This last observation coupled with the rapid
surface of glass, Marmur and Lefafirst reported the pres- spreading velocities suggested that the fingering instability
ence of dendritic-like patterns during the spreading processlerives from the presence of Marangoni effects. In fact, the
They assumed that such unusual patterns were formed durimgpid spreading and fingering were shown to depend on the
the spreading of a droplet ondxy substrate whenever the overall difference in surface tension between the pure and
bulk surfactant concentration wadovethe critical micelle  contaminated water surface and the initial thickness of the
concentrationlCMC). Marmur and Lelah speculated that a water support, in agreement with flows driven by Marangoni
primary film of surfactant spread out onto the dry substratestresses. Preliminary image analysis studies of the spreading
ahead of the macroscopic drop and that this precursor filffronts also uncovered that the contours were fractal cfirves
adsorbed onto the glass surface in one of three orientationaf fractal dimension close to the values obtained in physical
modes. These deposition modes were believed to form hysystems governed by Laplacian-type kinetics like diffusion
drophilic and hydrophobic patches on the substrate whiclimited aggregation, viscous fingering, or dendritic growth.
ultimately gave rise to the intricate wetting patterns ob-This last feature led the authors to investigate mathematical
served. By repeating these experiments in a controlled husimilarities to other fluid systems governed by Laplacian
midity cell to prevent spurious evaporation from the thinnesffields’ and provided the first attempt at a stability analysis for
parts of the spreading films, Troiaet al? observed much Marangoni driven spreading.
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of the hemispherical droplet which also spreadt®s At

long times, when Marangoni stresses decay significantly and
the spreading is instead controlled by capillary forces, the
spreading rate was shown to decrease substantially and ap-
proach the dynamics of a capillary driven flow. An
asymptotic analysis revealed that Marangoni stresses create a
long thin region of lengthl(t), ahead of the macroscopic
droplet in which a sizeable gradient in surfactant concentra-
tion is established. At the leading front where the spreading
monolayer joins the motionless uncontaminated film, a sharp
front is formed of height almost twice the undisturbed thick-
ness. Capillary terms arising from regions of strong curva-
ture are only significant in two small regions of lendftt)
<L(t) located near the base of the droplet reservoir and at
the steep front. The numerically calculated film thickness
profiles, including capillary effects, indicated significant
thinning near the point of deposition and a corresponding
thickening at the advancing edge. This long Marangoni con-
trolled region appeared to develop a quasi-linear increase in
thickness and a corresponding linear decrease in surfactant
concentration. For long wavelengthsin the rangd (t) <\
<L(t), a simplified linear stability analysis concluded
that the flow is unstable to perturbations at the base of the
spreading drop. To leading order in the wavenumber, the
perturbed concentration field was shown to satisfy Laplace’s
equationprovidedthe disturbances in the film thickness were
assumed negligible in comparison to disturbances in the sur-
factant concentration. In this work, we revisit Marangoni
driven flow and provide a more rigorous and complete for-
mulation of the disturbance analysis.

Within the lubrication approximation, Marangoni driven
spreading is described by a coupled set of nonlinear partial
differential equations whose solutions provide the spatio-
temporal evolution for the film thickness and surfactant con-
centration. Recent analysis of these equations have deter-
mined that there are several self-similar solutions to the
unperturbed flow depending on geometry and surfactant
feeding raté®! for purely Marangoni driven spreading. In
this paper we focus primarily on Marangoni driven spreading
in the simplest geometry allowable, namely the rectilinear
spreading of a finite monolayer of insoluble surfactant
spreading on the surface of a thin liquid film of higher ten-
sion. This geometry affords the fastest spreading rate for a

(b) finite quantity of surfactant. We study the linear stability of
the rectilinear solution whose front advancest¥in time.
FIG. 1. The spreading pattern generated by @l Arop of 1 mM aqueous  The calculations in the present work differ from these earlier
AOT solution deposited on a thin water fifrinitial water film thickness: studies in two main ways. First, we ignore capillary forces in
(&) H=1um and(b) H~0.1 um. order to derive simple self-similar solutions to the base
flows. Second, we allow for disturbances in both the film
thickness and surfactant concentration. Even within a quasi-

The original geometry used to model this new Ma-steady state approximation, the analysis is not straightfor-
rangoni instability was a hemispherical cap of fluid of vari- ward. The coupled disturbance equations contain two regular
able volume coated with insoluble surfactant spreading on aingular points associated with the linear self-similar solu-
clean thin liquid film consisting of the same fluldn this  tions. The troublesome singularity at the origin is identified
model, the drop provides a large reservoir of surfactant deby a Frobenius expansion and removed analytically. A
livered as a monolayer along the uncontaminated liquid filmproper mathematical treatment of the associated eigenvalue
A scaling analysis in rectilinear geometry determines that thequations determines that the rectilinear self-similar solu-
advancing surfactant coated film spreads in time*asThis  tions are linearly stable to perturbations of all wavenumbers.
rapidly moving front was shown to control the spreading rate  Inspection of the linearly stable eigenfunctions reveals a
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. A T the initial spreading pressuildg = og — oy, whereo§ de-
r=r, notes the surface tension of the clean liquid surface &hd
G =G eeeeeeeeesrisan the surface tension of the contaminated lidtiat the origin

of flow x* =0. We designate by the ratio of the initial film
thickness,Hj , to the initial extent of surfactant coverage,
&, which small parameter in lubrication theory satisfies
<11 Initial gradients in surface tension of ord&rg/L§
generate shear stresses at the interface of quiiér* /Hj .
The characteristic velocity for the streamwise and transverse
directions is, thereford)* = ell§/u*, while the vertical ve-
locity is scaled byeU*. According to the lubrication ap-
proximation, the pressure is scaled By = u* U*LE/HE2.
Insertion of the Marangoni velocity)*, into the pressure
scaling yieldsP* =II§/H{ , in which the force per unit
zZ length,II} , has effectively been converted into a force per
unit areaP*. The dimensionless surface pressure is defined
as o=(o* —o*)/11} , which describes the ratio of the
driving force at any point on the film surface to the maxi-
rich structure in Fourier space whose stability characteristicgum driving force. Introduction of these scalings into the
are better revealed by a complete energy analysis. Thigquations of incompressibility and momentum conservation
analysis demonstrates how the Marangoni contributions créfor the liquid support yields the following equations in di-
ated by the disturbance flow in the transverse direction argensionless form:
strong enough to dampen disturbances of all wavenumbers

-:* -D%

H,(x2zt)

FIG. 2. Schematic diagram of the spreading process.

and to restore the system to its original self-similar form. By Ut vyt W,=0, @
inspecting the various contributions to the rate of energy 0=—p,+ Uyy+ O(eRe€?), 2
production in the system, we suggest what types of eigen-

function solutions could destabilize the flow. In particular, =~ 0=—py+Bo+0(€?), ()
solutions of the flow for which a local decrease in film thick- _ 2

ness is accompanied by a local increase in surfactant concen- 0=—p;+Wyy+O(eRe €), )

tration could overturn the energy balance provided such conyherein the axial, vertical and transverse velocity fields are
tributions were sizeable. We also discuss how the addition ofepresented by, v and w, respectively, and henceforth,
capillary and surface diffusion terms into the original equa-subscripts refer to differentiation by, y, z andt unless
tions of motion will modify the spreading profiles to produce otherwise stated. With this choice of scales the modified

regions of adverse mobility near the point of deposition andBond number is defined &o=(p* g* 52|_32)/1'[3 while the
near the advancing front. Regions of adverse mobility gradimodified Reynolds number is given by Re

ents have been invoked in the past to explain the source &(p*u*Hg)/,u* =(p*IIg €LE)/ u*2. The parameteBo
instability in viscous fingering problems, for example. Al- represents the ratio of hydrostatic pressure to the Marangoni
though the physics driving the Marangoni spreading problengtress whileRe represents the ratio of inertial forces to vis-
is significantly different than the physics driving viscous fin- cous forces, in whichU* is set by the velocity governing
gering phenomenrta (i.e., Marangoni spreading is described Marangoni convection. Sindgo andReboth scale ag?, all

by two coupled flow variables and requires no external drivsych terms are dropped from consideration in this analysis
ing force this same general concept may help uncover theorrect toO(e).

source of the fingering instability in Marangoni flows. The boundary conditions used to solve E@4$—(4) dic-
tate no penetration and no slip at the solid wall as well as the
Il. FORMULATION OF GENERAL BASE STATE balance of shear and normal stresses at the interface. The

A Base state dimensionless no slip condition gt=0 is

Consider a thin Newtonian liquid film of initial uniform u=v=w=0. (5)
thicknessHg (x*,z*,t*), viscosityu*, and densityp* rest-  The tangential and normal stress conditions gt
ing on a flat solid substrate whose surface is locateg*at =H(x,zt), are given by
=0. The coordinate* denotes the horizontal coordinayé,
the vertical coordinate arzf the transverse coordinate. The Uy=0x, Wy=07, (6)
liquid film is partially covered by an insoluble surfactant p=0+0(€) @
monolayer whose surface concentratibii(x*,z* ,t*), var- '
ies smoothly from its maximum valud;?,, at the origin  where the effects of interfacial curvature are neglected since
x* =0, to a value of zero at* =L§ , as shown in Fig. 2. The they only enter ta@D(e?) with the scalings chosen. The kine-
quantitiesHg andLg are used to scale all vertical and hori- matic condition at the interface described by=dH/dt,
zontal displacements, respectively. Upon deposition, thevherev represents the surface velocity in the vertical direc-
monolayer will spread rapidly and spontaneously, driven bytion, can be expressed in terms of the fluid flux as:
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Ht+(Huavg)x+(HWaug)z:01 (8
whereu,, s andw,,q represent the streamwise and transverse

height averaged velocities. Similarly, mass conservation ofhereR(t) represents the extent of surfactant contamination

the insoluble surfactant is expressed by in time t. The choicey=0 corresponds to a finite amount of
1 deposited surfactant whilg>0 corresponds to a reservoir

i+ (Tug)y+ (Fwg) = @[Fxﬁ L'zl (9 which supplies surfactant to the spreading film at a rat&.of

Scale transformations which allow solutions of self-similar
wherel'* has been scaled Wy}, andug andwg represent the  form are

axial and transverse velocitiesyat H(x,z,t). In Eq.(9) the ©
modified surface Peclet number defined bpPeg X rauxn=2 H-(x t)=h 1
=(U*LE)/ ot =(IIEHE) u* 7F , where 7% s the diffu- “riye o oH=h(s). (D

R(t)
M(t)=f Ty dx=Mgt?, (16)
0

f(t)’

sion coefficient of the surfactant along the interface, repreSeIf-simiIarity requires that’=Rf"*
sents the ratio of surfactant transport by Marangoni convec(16) to

tion to that by surface diffusion. In typical applications, the
mass transport by Marangoni convection far exceeds that by
surface diffusion. For typical experimental values Idf

=40 dyn/cm, HE=10"3cm, u=1cp and ZF=10"° _ ,
cm?/s, Pe,=10%. In what follows, we therefore concentrate 1 N€S€ variable transformations convert Edsl) and(15) to

, which reduces Egq.

1
Mo= fo g(§)de. (18

on flow induced strictly by the balance of viscous and Ma- ) _

N1éh+ 5(h =0, 19
rangoni terms and treat all other mechanisms as sub- 1€het 2(h°ge)e 19
dominant. N1€9+ N0+ (ghgy) =0, (20

The dimensionless axial and transverse velocity fields

are obtained by integrating Eqe2) and (4) subject to the where all the explicit time dependence is clustered in the
boundary conditions in Eqg5)—(7): parameters\; = fRR and \,=fR?. Eliminating all the ex-

plicit time dependence produces the scaling functions
u(x,y,z)=oyy, W(X,Y,z)=0,y. (10 s
Substitution of Eq(10) into Egs.(8) and(9) in the limit of R(t)={>\1(1+ ) 114908, (21)
infinite surface Peclet number yields the two important evo- Y

lution equations foH(x,z,t) andI'(x,z,t), namely, 3 Loa
o L (=M t1-2ni, (22
Hi+ 3(H%orly )+ 3(H%orl") =0, (11 Y
Pt (THopT )+ (THop ), =0, I W et (29
Y

A constitutive equation of state relatingto I' is required to

close this pair of equations. The simplest such relation, valid’he extent of spreading for a finite amount of surfactant (

in the dilute concentration limit, is given by =0) reduces to the solutioR(t)=(3\,t)*? for rectilinear
geometry as previously showh!*'¢1” The casey=1/2

o(l)=1-T. (13 yields the spreading behavi(t)~t*2 whose base flow

This linear equation of state approximates the expanded susolution$® and stability characteristithave frequently been

factant monolayer as an ideal gdsWhen extending these discussed in the literature.

calculations to higher surfactant concentrations, a nonlinear Equations(19) and (20), which describe the film thick-

equation of state is requiréd. ness and surface concentration profiles, cannot be integrated
exactly for arbitrary values af; and\,. Simple analytical
solutions exist for the choicee=0 which determines that

B. Self-similar solutions N>=\;. In this work we focus strictly on the spreading be-
Equations(11) and (12) describe the Marangoni driven havior for the case/=0. This choice reduces E¢RO) to the
spreading of an insoluble surfactant monolayer along the qu—Orm

face of a thin liquid film. Substitution of Eq13) into Egs. (N1ég9+éghg,)=0. (24
(11) and (12) yields the evolution equations governing the
base state variablesHy(x,t) and I'y(x,t), for one-
dimensional rectilinear spreading

The solutions to Eqg19) and(24) for the film thickness and
concentration profiles require one boundary condition for
h(¢) and two boundary conditions fa(£¢). The two condi-
Hot— 3 (H3 00)x=0, (14)  tions forg(¢) are derived from consideration of the spread-
I'g— (ToHol o) =0 (15) ing behavior neaé=1. For quiescent conditions to be recov-
ot 07707 Oxx ¥ ered far downstream, the surfactant concentration must
In seeking similarity solutions which require global massvanish ahead of=1 such thatg(£=1)=0. Integration of
conservatior(so called similarity solutions of the first kind Eq. (24) across the boundagy=1 yields the jump condition
we determine the solutiond, and I' subject to the con- at the advancing front which determines the second bound-
straint ary condition ong, namely,
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- N where the quantities decorated with “tilde” represent pertur-
g:é=1")=~ hE=1)" (25  pations from the base state. Since none of the coefficients in
Egs.(30) and (31) depend explicitly on the transverse coor-

This relation represents the magnitude of the surfactant continatez, the perturbation is separable in this coordinate and
centration gradient which develops at the front of a film thatcan be Fourier decomposed into the form

has spread to a distan&t)=(3\;t)*. The concentration _— _— _
gradient at this leading edge requires knowledge of the local  (h.I)(X,z,t)=(H,G)(x,1)e'¥, (32)

film thickness and the mass of surfactant available foRyhere q represents the disturbance wavenumber. Substitu-
spreading. Full integration of Eq24) yields hg;=—N1§  tion of Eq. (32) into Egs.(30) and (31) yields two coupled

which, when substituted into EqL9), gives partial differential equations that govern the evolution of an
h(é€)=A¢, (26) applied disturbance
M H =1(H26 +2H ol H) —q—ZHzé (33)
g(§)=—K§+B. (27) =5 (Mobx ol'oxH)x= 5-HaG,

whereA=h(¢=1") andB=\,/h(¢=1"). The parameter Gy= (Tl oeH +Hol'0xG + ToHoGy)x— a2 oHoG. (34)
\; is determined by substituting E@27) into Eq. (18) to

give We seek once again solutions of self similar form. Since the

applied perturbations will not necessarily evolve on the same
Ni=2h(é=17)M,. (28)  time scale as the base state, we describe the disturbance

What remains to be calculated is the film thickness at thé‘unctlons by the following transformations:
D(&t)

leading edgeh(£=17), which is evaluated by requiring that - -
the total spreading fluid volume remain constant. Marangoni Hx)=W({1), Gx b= “R(t) (35
stresses shear the liquid film and create a linear film profile _ o
according to Eq(26), which when integrated must yield the Where the scaling ob(¢£,t) by R(t) enforces self-similarity.

initial fluid volume Vo=1. The film thickness is found to Other general scaling forms f@(x,t) will not yield a solv-
achieve a maximum value df(é¢=17)=2 which is twice able set of equations without some additional external clo-

the film height of the initial quiescent film. sure relation. Equation@3) and (34) reduce to the form
The self-similar base flow solutions for the spreading of 1
a finite amount of surfactant are therefore W =gVt ﬁ[(hzd);r 2hg, V)~ (g°R*)h*®],

h(§)=2¢ and g(§)=(N1/2)(1-§). (29 (36)

With \;=1/3, Eq.(29) reduces to the similarity solutions R 1

first derived by Jensen and GrotbéfgThe dimensionless CI>t=§(§(I>)§+ ﬁ[(ggg\lerhgg(DJrhg(bg)g

surface velocity is proportional te-hg.=\;£, which de-

scribes the simple shear flow of a Marangoni driven film in —(g?R¥)hgd], (37)
the lubrication approximation. It can be shown that the sur- — 113 i . .
face velocity in axisymmetric flow is smaller by a factor»of whereR=1"". Without loss of generality, the coefficient of

than in rectilinear flow due to the fact that the same amoung in Eq. (21) has been set to unity by the choikg=1/3.

of surfactant must disperse over an ever increasing area pr _ther choices ok, can simply be gbsorbed into the rescal-
ducing overall smaller gradients in concentration. We examN9s 1N Eq.(4D) to yield the same final result.
ine the stability of the spreading solutions in rectilinear ge-
ometry since it affords the largest driving force for spreading
and is therefore expected to be most vulnerable to perturb&. Quasi-steady-state approximation

tions. The quasi-steady state approximati®@SSA assumes

that the rate of change of disturbances far exceeds the rate of

IIl. LINEAR STABILITY ANALYSIS change of the base state. Inspection of the self-similar base
state reveals that the rate of changeh¢f) and g(¢) de-
creases a$~ *? in rectilinear geometry. We can therefore

We have constructed simple analytic forms for the filmassume there exists some ting,, sufficiently far fromt
thickness and concentration profiles in the limit that the=0, beyond which the base state profiles can be regarded as
spreading process has occurred for a sufficiently long timétationary in the variablg. Within this approximation, the
such that all memory of initial conditions is lost. We now temporal evolution which appears in the coefficients of Egs.
examine the linear stability of these self-similar profiles. In-(36) and(37) through the variabl&(t) is effectively frozen
troduction of a two-dimensional perturbation into E¢sl)  at R(tgs). Since the base state then only depends,otine

A. Perturbation equations

and(12) yields coefficients of the two coupled equations are no longer time-
~ = - e dependent and the solutions ¥ and ® are separable in
hi= 2 (Hgl'x+2Hol o)+ 3HGl 2, (300 time. As a result¥ and® assume the form
Ty =(Tologh+ Hol o0+ ToHoly)y+ ToHolzz,  (3D) (W,0)(£,1) =74y, ) (£ 1), (38)
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where o is the quasi-static growth constant that dependsn the values;=20+1<0 which produces an unbounded
parametrically ongq andt,s. Substitution of this expanded solution¢(¢) asé—0. This singular behavior near the origin
form into Egs.(36) and (37) gives must be factored out from E¢44) before seeking numerical
solutions. The eigenfunctio(é) is therefore redefined to be

Rt 1 1
T Ritg ¢Vt 2R(1? B(£)=ETY(8), (46)
2  (2R2\h2 to eliminate any numerical instabilities. Re-expressing Eq.

*L(°¢e+2hge)— (ATRIN"S] 39 (44) in terms of the well behaved functioni(¢) gives

d

- b)Yt (O ()Y

: Yeee=— * (“7)

oo Rlad o 1 a(é)
R(tgd) ~ ¢ R(tgd® where
X[(99ey+hgeh+hge,) .~ (a°RH)hgel. (40 a(6)= 21— ).

We replace the base flow profilds,and g, by the expres- CaE_ B
sions derived in Eq29) and effect the following three vari- b(§)=¢[5-6¢+40(1-8)],

able changes c(&)=4(o+1)?—2&(o+1)(20+3)—K2E3(1—-§),
TR(tg)— o, 2Rt —K2, g—nﬁ. (apy and
d(&)=20(o+1)—K?&(1-2¢).

With these substitutions, Eq39) and (40) reduce to Equation(47) is solved subject to the condition thé(¢) be

0¢:(2§2¢§)§_ y—2K2E2, (42)  regular at the boundaries. This condition allows a Taylor
series expansion of the form

op=(E(1-8 ¢~ (1= )~ K*E(1-p. (43

Since Eq.(42) determines an equation faf(¢), it can be

substituted into Eq(43) to yield a single third order equation . _
for ¢(&), namely, which when substituted into Eq47) and evaluated at the

boundary point€=0,1 yields the boundary conditions

Y<§)=i§0 bi(é—¢)', =12, (48)

%52(1_§)¢§§§+ 2= 36— (o+1)(1-9) g

g
H(1-26- K2 (1=~ (0 + 1)(1-26) YO=" 3 YO 49
+(o(o+1)—K2&(1— $¢—(o+1)(1-¢§)))¢=0. KZ—o(o+3)
4 Y:(0)= (ZO_T)ZY(O)! (50

The quasi-static growth constamtrepresents the eigenvalue Yee(1)=—2(a+1) Y1) +[20(o+1)+K2]Y(1).

of this linear ordinary differential equation. The real part of (51)
the eigenvaluegr, determines the stgbility of the sys'tem. Since Eq.(47) is linear in Y(£), the solutions are only
We seek the eigenmode corresponding to the root with thgnown to within a multiplicative constant. For convenience,

largest real part which signals the fastest growing unstablg,e solutions are normalized by the chol¢e)=1.
mode.

) D. Analytical solution for K=0 and =0
C. Solution procedure ) ) ) _
) . ) . Equation(47) admits an analytical solution for the case
Equation(44) requires a numerical solution but the pro- .5 ando=0. In this infinite wavelength limit, the third

cedure is complicated by the existence of two regular singUaqer differential equation reduces to the simplified form
lar points at the end points of the domain of integration,
(1-4)

namely,£=0 and£=1. To investigate the behavior of Eq. 0) 2 ,(0)
(44) in the vicinity of these points, we employ an expansion §1-9dy - 2 (670 e
suggested by the method of Frobenius

=0, (52
¢

where the superscrigh) denotes the solution for the neu-
trally stable state. A single integration yields the equation
£(1-¢) gb(g%):cl wherec, is a constant. Two further inte-
grations yield a solution of the form

¢<§>=(f—§,—)“i§o a(é—¢)', j=1.2 (45)

where £,=0 and &£,=1. Solution of the indicial equation

corresponding to the terrm=0 yields the solutions to the ) _ 1-¢

=CatCré+cy(1— —
prefactor exponeni;=0,0,20+ 1 anda,=0,1,3. We focus ¢ =Cat et (1= )i £ (53
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wherec, andc; are two more constants of integration to be
determined from boundary conditions. In this same limit, Eq. 0.0 1
(42) can be used to derive the corresponding solution for the
perturbed film thicknessj(®):

& & 0=-0.5
1-¢ 1-¢) 04 / 8
G4 o I | 11

Applying the constraint that both functiong® and ¢(® be

regular at the endpoint§=0 and £&=1 necessitates the
choice c;=0. Furthermore, since all singular behavior has  -0.8 | ]
been extracted from¢(§¢) through Eq. (46) such that 7
HO(&)=£Y(¢), it follows that ¢(©(0)=0 sinceY(£) is a

P O=(282¢) ;= 4c,E+2¢4| 2¢ In

regular and well behaved function i& According to Eq.
(53 then,c;=0 and the analytical solutions are simply of 12
the form¢(9(&) = c,& and y(9(¢) = 4c,¢. Because the gov- “0.0 10.0 20.0
erning equations are linear, the solutions are only known tc(a) K’
within an overall constant which for convenience is choser 40 . ,
to bec,=1 suchthat 1 ____ v ,/’
¢(O): é, (55) 3-5 B — ¢ ,’,’ 4
pO=4¢. (56) 30 ¢ 1
These analytical solutions provide a numerical check on the 25 L ,/' _
shooting technique used to solY¢¢). o
Vi 20 ¢ -
IV. RESULTS AND DISCUSSION R
15 - o |
A. Numerical solutions L
The third order differential equation fof(£) shown in Lo | e
Eq. (47) has been converted into an eigenvalue problerr 05 | ,/' |
which was solved with a standard shooting technique. The ) /’
numerical solutions were constructed by shooting away fron 0.0 b= .
£=0 and¢é=1 and applying the three boundary conditions 0.0 0.5 1.0
some small distanc&¢ away from each endpoint. One must (b) 3

shoot away from these two endpoints since the denominator

in Eq. (47) vanishes a£=0 and 1. The solutions for (&) FIG. 3. (a) Dispersion relationr(K?). (b) Neutrally stable eigenfunctions
— 2_

are insensitive to the choice df¢ for Ag~O(10°4) or  (¢=0) yrand¢for K=0.

smaller. Simultaneously shooting away from both endpoints

wi'th th'e requirem'ent that, Y, anQYgg be contipuous at the (i) converged to the root shown in Figia, (i) converged to
midpoint £=0.5 yields the condition about which the values an additional branch that exhibits a maximum valueref

of o are iterated to find the appropriate eigenvalue. Different_ 1.327 atk =0 and continues decreasing, (i) never con-

matching points in the interval y_|elded the same S°|Ut'0_n§'_ A\/erged. This second branch is of little interest from a stabil-
fourth order Runge-Kutta aIg_onthm was used as the Inltlalit standpoint and was not studied further. We were unable
value solver and the step size was adjusted to ensure ﬂf find convergent solutions for initial guesses>2 irre-

continuity rgquwe_ments &=0.5. Solutions t0Y(¢) ando gardless of the wavenumber. The solution plotted in Fig. 3
were.subsutut.ed into Eq46) and Eq.(42) to reconstruct the therefore appears to belong to a single continuous branch.
full eigenfunctionsé(¢) and ().

In Fig. 3(a) is shown the dispersion curve(K?), gen-
erated from the shooting method. This curve was construct
by solving Eq.(47) for different values of wavenumbeé¢?
varied in small increments of the order AK2=0.002. The The absence of any positive roots to the coupled linear
eigenfunction solutions varied smoothly as the wavenumbesystem of equations indicates that within the quasi-steady
was increased indicating no sudden crossings from onstate approximation, the self-similar base flow profiles,
branch ofo to another. In an effort to uncover any positive h(&)=2¢ and g(&€)=\.(1—£&)/2, are linearly stable to in-
roots or any negative roots lying above the solution shownfinitesimal perturbations. It is difficult to understand this re-
the initial guesses foo were systematically varied in mag- sult on purely physical grounds especially since the model-
nitude. For instance, in searching for the roots lying close tding includes no explicit stabilizing mechanisms like
the pointK =0, we tried initial guesses far ranging from 0  capillarity or surface diffusion. The source of the stabilizing
to 2 in increments of 10%. In all cases, the solution always mechanism can only be traced to the transverse Marangoni

eﬁ' Characteristics of the dispersion curve and
associated eigenfunctions
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FIG. 5. Behavior ofY,(£) nearK?=10.

be much smaller than the amplitude of the disturbance con-
centration. These earlier studies predicted linearly unstable
flow. Although the base flow profiles being studied are dif-
ferent[i.e., R(t) ~t versusR(t) ~t*?], it now appears that
allowing both the surfactant concentration and the film thick-
ness to undergo disturbances self-consistently produces over-
all stable flow. Spreading behavior governed Rft) ~t*?
cannot be treated analytically as simply as fg)~t**
case. At present there is no direct comparison one can make
between these two stability calculations.

It is interesting to note that in other thin film spreading
problems, like the coating of a dry substrate by a liquid film
subject to gravitational forcéscentrifugal force¥ or sur-
face shear stresséSthe linearized form of the equation of
motion for the film thickness is translationally invariant in
the streamwise direction. This symmetry dictates that the
eigenfunction solution foo=0 be directly proportional to
the first derivative of the base flow profile. In contrast, the
linearized equations of motion for Marangoni driven flow

convection established by local disturbances. To understantbntain explicit dependence on the streamwise coordifjate
more fully exactly how the transverse Marangoni contribu-as evident in Eq942) and(43). The eigenfunction solutions
tions can counteract disturbances of any wavelength, we inare therefore not neatly related g andg,. Had this ex-

vestigate the shape of the eigenfunctighand ¢ for differ-

plicit dependence oré not been present, the associated

ent regimes irK space. The dispersion curve shown in Fig. eigenfunctions would be flat throughout the interval of inte-
3(a) divides itself naturally into three regions labeled I, Il, gration unlike the actual monotonically increasing ramps
and lll, each reflecting a somewhat different characteg¢in plotted in Fig. 3b).

and ¢. Region | spans the rangetK?<3.2, region Il the

range 3.2K2=<10, and region lll the rang&?=10.
We focus first on the eigenfunction solutions for infinitely changes significantly in each of the three regions. In Fig. 4 is

long wavelength disturbance& =0, plotted in Fig. 8b).

For finite wavenumbers, the individual shape of the
eigenfunctionsy and ¢ and their relation to each other

shown the eigenfunctions for wavenumbers ranging from O

The shooting technique correctly reproduces the analyticakK?<4.0. In order to magnify certain features néés 0,

solutions derived in Eq455) and(56) for o=0. These neu-

the functiony is only plotted in the range €£<0.5. The

trally stable solutions increase linearly throughout the dosolutions change character upon traversing the vadde

main of integration & ¢<1, with perturbations in the di-

~3.2. With increasing wavenumber, the functionsand ¢

mensionless film thickness achieving a four fold increasancrease in absolute magnitude for smélland develop
over perturbations in the dimensionless surfactant concentratrong curvature near the boundary poiéitsO andé=1, in
tion. This result sheds light on the long wavelength approxi-contrast to the linear profiles fak?=0. Near a value of

mation used in a previous stability calculatidn which the

K2~3.2 the functiony changes sign near the origin and

amplitude of the disturbance film thickness was assumed tbecomes increasingly negative whildbecomes increasingly
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FIG. 7. Surface plots of the total film thicknegs) region | (K?=1), (b)

H 2_ H 2__
positive. The value<2~3.2 signals a transition in behavior "9'°" ! (K*=5) and(c) region Iil (K*=15).

which derives from the Frobenius expansior)
~ £2971Y(¢), wherein ¢ diverges for valuesr<—1/2, or
equivalently for wavevectork?=3.2. This singular behav-
ior at the origin creates corresponding singular behavia¥ in To visualize the overall effect of an infinitesimal distur-
as shown in Fig. 4. bance on the flow properties of a film driven by Marangoni
Another change in the behavior of the eigenfunctionsforces in each of the regions specified above, we plot in Fig.
occurs upon traversing region Il into region Il as predicted?7 the complete linearized solution to the film thickness which
by the boundary condition in E¢49) which suffers a pole at is a superposition of the base state and the disturbance eigen-
o= —1. Since the normalization condition was chosen to beunction extended in the direction. Each figure demon-
Y(0)=1, Eq. (49 requires thatY, and therefore$(é) di-  strates the typical behavior of the film thickness for some
verge at the origin whenr=—1, which occurs forK? choice of wavevector within each of the three regimes delin-
~9.8. In Fig. 5 we show how,(£) changes character for eated in Fig. &). Note that the solutions in Figs(&j and(b)
various choices of wavenumber lying on either side of thismaintain registry in the streamwise direction wherein points
transition point. AsK? increases through this special point, of maximum depression at the origin become points of high-
the functionY(£) must suddenly change sign from positive est elevation af=1 and vice versa, whereas the solution in
to negative values. This change in sign causes a significaig. 7(c) does not. Although the transient disturbances as-
change in the behavior af and ¢ as demonstrated in Fig. 6. sume the shape of slender fingers or rivulets throughout the
For example, whereagachieves negative values close to thedomain of spreading, the flows in regions I, Il, and Il are all
origin for K?=9.6 but is positive everywhere else in the linearly stable and decay away exponentially in time. In re-
domain, the function switches signh and becomes everywhermgions Il and lll, the magnitude of the perturbations near the
negative after passing through the transition point. origin is significantly larger than the magnitude of the per-
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30.0 . . . . TABLE |. Physical mechanisms associated with each term in the energy

method.
-y
— ¢ Terms Expression Physical mechanism
1 T w(28%¢,) .~ y*1déE Marangoni convection of
fluid layer in the¢ direction.
10.0 2 —2K2[ Y 2 ydp1dE Marangoni convection of
fluid layer in thez direction.
3 1 1 Marangoni convection of
1- —-7(1— d
V.0 fo[¢(§( Odeal §)¢)§] ¢ surfactant monolayer
in the ¢ direction.
, 4 — K23 E(1—¢) p?)dé Marangoni convection of
-10.0 |/ . surfactant monolayer
f in the z direction.
|
i
i
-30.0 ' ' ' ' the disturbance film thickness or the disturbance concentra-
0.0 0.2 04 0.6 0.8 . .
£ tion according to
11 1
FIG. 8. lllustration of the complementary relation betwegrand ¢ for E= > P2 dé= E(W,T), or (57)
K?=5. 0

1
_ . o Ezif ®2 dé= l(c1>,<1>>. (58)
turbations near the endpoiét 1, which is more clearly seen 2 Jo 2

from Figs. 6 and 8.

There exists an interesting complementary reIaﬂonshmRecastlng Eqsi36) and(37) in compact operator form gives
betweeny and ¢ in regions Il and 11l which could possibly V=72 [V,D] (59
have yielded unstable flow according to the following rea-
soning. Observe in Fig. 8 that near the origin, where the film
thickness suffers appreciable thinning, the liquid mobility d :,?//Z[qr ®], (60)

will decrease substantially thereby retarding convection of
fluid and surfactant in this region. Surfactant accumulated/here the linear operators; and , represent all the terms

here to create a region of particularly low surface tension a8 the right hand side of Eqé36) and(37). The subscript
demonstrated by the form ab(&). Transverse Marangoni denotes differentiation with respect to the explicit time de-
stresses will further pull on this film causing it to thin even Pendence. The rate of energy productiaiE/dt= (¥, v)
further. This mechanism should create strong corrugations iF (®,®), is calculated by taking the inner product of Eq.
film thickness and create “fingered” patterns in the trans-(59) with ¥ or the inner product of E¢60) with ® to give
verse direction. Unfortunately, this complementary behavior

betweeny and ¢ only exists in a very small region near the a9t =E(‘lf,\If>=(‘lf,:Szfl[\If,<b]>, (61
origin and is apparently not significant enough to destabilize

the flow. In the next section, we present results of an energgr

analysis to quantify the relative magnitude of stabilizing and

destabilizing contributions to the overall flow behavior. H:5<q’:¢>=<‘p,§52[‘1’:®]>- (62
C. The energy method The normalized dimensionless rate of energy producﬁﬁn,

- s ) = (dE/dt)/E, is therefore calculated to be
Within our simplified model only Marangoni stresses ]

generated by the presence of surfactant drive the spontaneous & (4,21, d])

spreading process. For the unperturbed 1-D flow, these % =7~ R (63)
stresses convect fluid and surfactant downstream rapidly and

efficiently. The application of an arbitrary 2-D disturbance ©'

creates additional stresses with subsequent transport of fluid - (b, Lol th,d])
and surfactant in the transverse direction. According to the —=0= W (64
linear stability analysis, this transverse flow successfully '

dampens disturbances of all wavenumbers. By decomposiribhe terms«, Z[ &, ¢]) and{ ¢, Z,[ &, ¢]), where.%#; and

the flow into its constituent contributions we can better ap-%, are the right hand sides of Eq€2) and (43), comprise

preciate the relative scale of streamwise versus transverdeur separate terms shown in Table I. The first two terms

mass flux for disturbances of self-similar form. represent Marangoni convection of liquid in the streamwise
The mechanical energy generated by an applied pertuand transverse directions, while the last two terms corre-

bation can equivalently be expressed as an inner product apond to Marangoni convection of surfactant in the stream-
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: nicely satisfy these inequalities but only in a very limited
I ! I 1 range about the origig=0. Outside this range the inequali-

' ties are not satisfied and the contributions to the flow are
overall stabilizing. For unstable flow this Marangoni driven
system must generate eigenfunction pairs with the comple-
mentary nature indicated by the three inequalities in which
case it can tilt the energy balance towards the positive values
of the energy spectrum. As summarized in the last section, a
local decrease in film thickness accompanied by a local in-
crease in surfactant concentration will provide the proper
scenario for producing a lateral fingering instability.

What direction might one pursue in order to model a
system of equations that can produce and exploit this
complementarity betwee#r and ¢? We have shown that the
0.0 5.0 10.0 15.0 unfavorable results of the stability analysis are directly

K caused by the linear behavior of the self-similar solutions in
Eq. (29) for which an increase in film thickness is accompa-
nied by a decrease in surfactant concentration. All distur-
bances eventually die away due to the increasing liquid mo-
bility provided by the linearly increasing ramp in film

wise and transverse directions. These terms arise from tH8ickness from 8<£<1. In order to localize disturbances

coupling of the 1-D spatially inhomogeneous base flows witiPehind the moving front, the film thickness must somewhere
the applied 2-D disturbance. suffer a decrease in thickness which will further be aggra-

Results of energy analysi¥he normalized dimension- Vvated by a consequent increase in surfactant concentration.
less rate of energy production for each of the four terms isrhere is another fluid mechanical problem, namely Saffman-
plotted in Fig. 9, along with their summation, which must Taylor flow ' for which regions of adverse mobility gradient
exactly equal the valuec2for each wavevector selected. The Produce unstable fingering configurations. As an example of
vertical dotted lines indicate the transition points discussedhis flow, consider the case of a gas penetrating into a vis-
earlier for whicho=— 0.5 or— 1. Positive integral quantities cous liquid sandwiched between two plates of constant
destabilize the flow while negative integral quantities pro-Separation. The average fluid velocity issr=—(b%
vide a stabilizing influence. The quantity represents the 12u)dP/dx, whereb is the plate spacingy the liquid vis-
energy integral associated with teinin Table I. Inspection ~ Cosity, andd P/dx the local pressure gradient. Since the gas-
of these different terms automatically reveals which contri-e0us phase experiences a decrease in mobility when penetrat-
butions would have to be amplified or minimized signifi- ing into the more viscous medium, it can easily be shown
cantly to produce positive roots in the dispersion curvethat the front separating the two regions of differing mobility
a(K?). becomes linearly unstable and propagates fingers into the

I, exhibits two maxima andl, two minima precisely at Vviscous liquid. For the case of a viscous liquid penetrating a
the location of the transition points and reflect the change igas, the front is stable. We have shown that the average
behavior iny and ¢ which occurs upon traversal of these velocity of a thin film sheared by Marangoni stressesjs
points. These changes do not affect the behavidg aindl , =—(h/2n)dI'/dx wherein the quantityh/2u can be re-
as strongly, although there occurs a slightly larger increase igarded as the mobility factor. Although in our system the
the amplitude of these terms near the second transition poiniscosity is constant throughout, a local decrease in the film
as compared to the first. This overall behavior is expectethicknessh can effectively lower the local film mobility.
since the amplitude of the eigenfunctions corresponding té\ppealing to this concept of adverse mobility, we describe
the film thickness, which affects termgandl ,, is typically =~ what other forces can be included in the spreading problem
much larger than the amplitude of the eigenfunctions assocto produce exactly such regions of reduced mobility.
ated with the surfactant concentration, which affects tdrhms The inclusion of capillarity and surface diffusion into the
andl,. What is clearly noticeable in the figure is that the equations of motion obviates the possibility of finding simple
majority of the energy contributions are weighted toward theanalytic self-similar solutions for the unperturbed flow, a fact
negative end of the energy spectrum. Tetmandl,, which  which eventually complicates the linear stability analysis.
reflect Marangoni convection of fluid and surfactant in theNonetheless, the method of lifésan be used to solve the
transverse direction, are negative for all wavevectors anéquations of motion numerically in the presence of these
large enough to offset any destabilizing effects in the streamadditional forces, as first discussed by Gaver and Grotiferg.
wise direction. Not only do these forces help smooth numerical instabilities

Further inspection of termls andl, associated with the associated with the sharp fronts created by Marangoni
liquid flux reveals that that the eigenfunction pairs for which stresses alone, but they also change the character of the so-
b$p<0, >0 and y¢>0 maximize the destabilizing Iutions from simple ramp-like behavior over a finite domain
terml, and minimize the stabilizing terip. The eigenfunc- to a more complex, spatially inhomogeneous structure of
tion solutions for K?=3.2 or equivalently foro<—0.5 semi-infinite extent. It may seem that the addition of these

1.5 I

o

e -

3
N §
0
T
g

FIG. 9. Variation of#/2 with K2. Vertical dotted lines reflect solutions
=—-0.5ando=—-1.
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2.0 . The linear stability of the disturbance equations is calcu-
lated within the quasi-steady state approximati@ESA),

which assumes that the rate of change of the base state is
much slower than the rate of change of any disturbance. This
approximation leads to a coupled eigenvalue problem whose
largest real root is identified as the quasi-static growth rate
for the most unstable mode. Results obtained from the QSSA
analysis determine that the coupled system of equations is
linearly stable to 2-D disturbances of all wavenumbers. 3-D
visualizations of the complete linearized solution indicate
finger like protrusions throughout the spreading domain;
J however they decay away exponentially in time to restore the
film thickness to its original ramp-like profile. The fact that
the calculations in rectilinear geometry, which provides the
largest impetus for Marangoni driven spreading, yield lin-

0.00'6 0'5 1'0 15 early stable flow strongly suggests that an additional charac-

) ’ ) ’ teristic of the flow must be included in future analyses.
S An energy decomposition reveals how Marangoni con-
FIG. 10. Film thickness profiles faf) linear self similar solution governed ~Vection in the transverse direction successfully stabilizes the
by Eq. (29 and (ii) numerical solution including capillarity and surface system against infinitesimal 2-D perturbations. The terms re-
diffusion for the case o€a=10"*, Pe,=5.10" and dimensionless time  gponsible for destabilizing the flow are most dominant in the
=3L rangeK?=3.2 but only occur within a narrow range about
the origin £=0. We have identified that eigenfunctions sat-
two forces will only further stabilize the flow. We propose, isfying the inequalities/$ <0, yh¢>0 andge>0 over a
much larger range i§ can potentially destabilize the overall

however, that the change in character of the form of the%I w. We describe a wav to enhance th mplementary n
solutions produces regions of adverse mobility known to de- ow. VW€ describe a way 1o ennance the compiementary na
ture of the eigenfunctions reflected in these inequalities by

stabilize the flow in the Saffman-Taylor probleive have introducing into the equations of motion the additional sub-

plotted in Fig. 10 the self-similar solution for the dimension—dom.nant forces of capillarity and surface diffusion. The in-
less film thickness from Eq(29) along with a numerical ! S pifianty su usion. !
clusion of these terms changes the shape of the base flow

solution for the film thickness profile with the inclusion of il onificantly t te t . h the fil

capillarity and surface diffusion. As expected, this numericalpéic(): lir?:szI?r?ilnlgasnugst:nt?:l? (tahevrvgb)r/eggziir\:é tehrg roSv rlnmo
rofile more closely resembles experimental rvation . ) i

profile more closely resembles experimental observations b ility. In analogy with the Saffman-Taylor probleth,the

more importantly, it suffers two regions of adverse mobility reation of adverse mobility aradient n iblv destabi
gradients, namely the region near the point of surfactan(EZZathoe fI%wa erse mobility gradients can possibly destabl-

deposition at the left and the region where the sharp advanc- There exist other avenues of inquiry regarding the sta-

ing front joins the thinner undisturbed clean film at the right. bilitv of a M i dina film. F |
We are presently investigating the linear stability of these lity ot a Marangoni driven spreading fiim. or example,

numerically generated profiles to uncover if either is vuIner-i/'l';?:nth:mvstlfecs"tsy e(ggoi';e i];gri? tg:l:':gcgrgﬁ?fzsiséﬁcgfxe?
able to finger formation in the transverse direction. 9 P Y

tive) is an example of a thin film under simple shear, the flow
dynamics may turn out to bknearly stable, as shown by
V. CONCLUSION Romano¥® and others for planar Couette flow. One should

We have investigated within the lubrication approxima—tEenﬂs'ngaLe the fullyf'STD flowsl'anotlj n(l;.me”ga"y Investigate
tion the base flow profiles and linear stability for the recti- N€ flow behavior to finite amplitude disturbances, as pres-

linear spreading of an insoluble surfactant along a thin quuiaemIy url}de(;\_/vgyi. Also, since tr|1te opera}to%sl %ndi.%? aret
film of higher surface tension. In the limit in which the spon- non sefi-adjoint, We are simuftaneously conducting a tran-

éient growth analys?é to determine if certain modes grow

the unperturbed profiles for the film thickness and surfactan?ufﬂc.'entIy in the early stages of spreading to activate a Iar_ge
concentration can be computed analytically. The proﬁleglon-hnear response. We hope that our present linear stability

chosen for study are self-similar solutions of the first kindanalySiS of the self similar solutions provides a provoking

corresponding to global surfactant mass conservation. In th%tartmg point into the stability considerations of Marangoni

frame of reference, since the film thickness is a linearly in- riven spreading.

creasing function while the surface concentration is a linearly

decreasing one, the velocity field describes a simple shef?CKNOWLEDGMENTS
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