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Recent experiments by several groups have uncovered a novel fingering instability in the spreading
of surface active material on a thin liquid film. The mechanism responsible for this instability is yet
to be determined. In an effort to understand this phenomenon and isolate a possible mechanism, we
have investigated the linear stability of a coupled set of equations describing the Marangoni
spreading of a surfactant monolayer on a thin liquid support. The unperturbed flows, which exhibit
simple linear behavior in the film thickness and surfactant concentration, are self-similar solutions
of the first kind for spreading in a rectilinear geometry. The solution of the disturbance equations
determines that the rectilinear base flows are linearly stable. An energy analysis reveals why these
base flows can successfully heal perturbations of all wavenumbers. The details of this analysis
suggest, however, a mechanism by which the spreading can be destabilized. We propose how the
inclusion of additional forces acting on the surfactant coated spreading film might give rise to
regions of adverse mobility gradients known to produce fingering instabilities in other fluid flows.
© 1997 American Institute of Physics.@S1070-6631~97!00112-8#
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I. INTRODUCTION

The spreading of solutions containing surface active m
terial plays a very significant role in daily life and indust
ranging from detergency and aerosol delivery of medicat
drugs to lubrication and ink jet printing. In general, a pu
liquid film spreading on a dry solid will advance fairl
slowly unless driven by external forces like gravity, centrif
gation, or surface shear. A surface active film distributed
a thin liquid support, however, will cause spontaneous
very rapid spreading when the surface material creates
gions of lower surface tension than the supporting liqu
Controlling the rate and extent of such spreading require
thorough understanding of the so-called Marangoni flo
Typical coating solutions often contain surface active age
like hydrocarbon solvents, phospholipids, surfactants
dyes. Not only do these substances significantly lower
surface tension of the supporting liquid but, depending
their local concentration, will create gradients in surface t
sion along the air-liquid interface.

While conducting experiments on the radial advance
small water droplets containing various surfactants on
surface of glass, Marmur and Lelah1 first reported the pres
ence of dendritic-like patterns during the spreading proc
They assumed that such unusual patterns were formed du
the spreading of a droplet on adry substrate whenever th
bulk surfactant concentration wasabovethe critical micelle
concentration~CMC!. Marmur and Lelah speculated that
primary film of surfactant spread out onto the dry substr
ahead of the macroscopic drop and that this precursor
adsorbed onto the glass surface in one of three orientati
modes. These deposition modes were believed to form
drophilic and hydrophobic patches on the substrate wh
ultimately gave rise to the intricate wetting patterns o
served. By repeating these experiments in a controlled
midity cell to prevent spurious evaporation from the thinn
parts of the spreading films, Troianet al.2 observed much
Phys. Fluids 9 (12), December 1997 1070-6631/97/9(12)/3645
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more regular fingering patterns as shown in Fig. 1. Su
patterns were obtained by gently depositing a 2ml droplet of
1 mM AOT @sodium bis-~2-ethylhexyl! sulfosuccinate# on
the surface of a clean water film ranging in thickness from
mm to fractions of a micron. Many common laboratory d
tergents were found to produce a similar instability.1–3 In
each case, the spreading droplet creates a rapidly grow
disk with a thickened front that advances with a speed on
order of cm/s. Far behind this advancing rim, there devel
a sharp depression in liquid height near the location of
initial deposition point. Slender fingers appear and grow r
idly into this thinned region undergoing spreading, shieldin
and tip-splitting, processes observed in other fluid flow ins
bilities driven by completely different forces.4 During the
past few years several other experimental groups have s
confirmed the development of this fingering instability du
ing the spreading of insoluble and soluble surfactant films
a thin water support.3,5–7

Troian et al.2 detected the instability for surfactant con
centrations both above and below the CMC. More imp
tantly, the fingering patterns never appeared on perfectly
substrates. This last observation coupled with the ra
spreading velocities suggested that the fingering instab
derives from the presence of Marangoni effects. In fact,
rapid spreading and fingering were shown to depend on
overall difference in surface tension between the pure
contaminated water surface and the initial thickness of
water support, in agreement with flows driven by Marango
stresses. Preliminary image analysis studies of the sprea
fronts also uncovered that the contours were fractal curv8

of fractal dimension close to the values obtained in phys
systems governed by Laplacian-type kinetics like diffusi
limited aggregation, viscous fingering, or dendritic grow
This last feature led the authors to investigate mathema
similarities to other fluid systems governed by Laplaci
fields9 and provided the first attempt at a stability analysis
Marangoni driven spreading.
3645/13/$10.00 © 1997 American Institute of Physics
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The original geometry used to model this new M
rangoni instability was a hemispherical cap of fluid of va
able volume coated with insoluble surfactant spreading o
clean thin liquid film consisting of the same fluid.9 In this
model, the drop provides a large reservoir of surfactant
livered as a monolayer along the uncontaminated liquid fi
A scaling analysis in rectilinear geometry determines that
advancing surfactant coated film spreads in time ast1/2. This
rapidly moving front was shown to control the spreading r

FIG. 1. The spreading pattern generated by a 2ml drop of 1 mM aqueous
AOT solution deposited on a thin water film.2 Initial water film thickness:
~a! H'1 mm and~b! H'0.1 mm.
3646 Phys. Fluids, Vol. 9, No. 12, December 1997
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of the hemispherical droplet which also spread ast1/2. At
long times, when Marangoni stresses decay significantly
the spreading is instead controlled by capillary forces,
spreading rate was shown to decrease substantially and
proach the dynamics of a capillary driven flow. A
asymptotic analysis revealed that Marangoni stresses cre
long thin region of length,L(t), ahead of the macroscopi
droplet in which a sizeable gradient in surfactant concen
tion is established. At the leading front where the spread
monolayer joins the motionless uncontaminated film, a sh
front is formed of height almost twice the undisturbed thic
ness. Capillary terms arising from regions of strong cur
ture are only significant in two small regions of lengthl (t)
!L(t) located near the base of the droplet reservoir and
the steep front. The numerically calculated film thickne
profiles, including capillary effects, indicated significa
thinning near the point of deposition and a correspond
thickening at the advancing edge. This long Marangoni c
trolled region appeared to develop a quasi-linear increas
thickness and a corresponding linear decrease in surfac
concentration. For long wavelengthsl in the rangel (t)!l
!L(t), a simplified linear stability analysis conclude
that the flow is unstable to perturbations at the base of
spreading drop. To leading order in the wavenumber,
perturbed concentration field was shown to satisfy Laplac
equationprovidedthe disturbances in the film thickness we
assumed negligible in comparison to disturbances in the
factant concentration. In this work, we revisit Marango
driven flow and provide a more rigorous and complete f
mulation of the disturbance analysis.

Within the lubrication approximation, Marangoni drive
spreading is described by a coupled set of nonlinear pa
differential equations whose solutions provide the spa
temporal evolution for the film thickness and surfactant co
centration. Recent analysis of these equations have d
mined that there are several self-similar solutions to
unperturbed flow depending on geometry and surfac
feeding rate10,11 for purely Marangoni driven spreading. I
this paper we focus primarily on Marangoni driven spread
in the simplest geometry allowable, namely the rectiline
spreading of a finite monolayer of insoluble surfacta
spreading on the surface of a thin liquid film of higher te
sion. This geometry affords the fastest spreading rate fo
finite quantity of surfactant. We study the linear stability
the rectilinear solution whose front advances ast1/3 in time.
The calculations in the present work differ from these ear
studies in two main ways. First, we ignore capillary forces
order to derive simple self-similar solutions to the ba
flows. Second, we allow for disturbances in both the fi
thickness and surfactant concentration. Even within a qu
steady state approximation, the analysis is not straight
ward. The coupled disturbance equations contain two reg
singular points associated with the linear self-similar so
tions. The troublesome singularity at the origin is identifi
by a Frobenius expansion and removed analytically.
proper mathematical treatment of the associated eigenv
equations determines that the rectilinear self-similar so
tions are linearly stable to perturbations of all wavenumbe

Inspection of the linearly stable eigenfunctions reveal
O. K. Matar and S. M. Troian
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rich structure in Fourier space whose stability characteris
are better revealed by a complete energy analysis. T
analysis demonstrates how the Marangoni contributions
ated by the disturbance flow in the transverse direction
strong enough to dampen disturbances of all wavenum
and to restore the system to its original self-similar form.
inspecting the various contributions to the rate of ene
production in the system, we suggest what types of eig
function solutions could destabilize the flow. In particula
solutions of the flow for which a local decrease in film thic
ness is accompanied by a local increase in surfactant con
tration could overturn the energy balance provided such c
tributions were sizeable. We also discuss how the additio
capillary and surface diffusion terms into the original equ
tions of motion will modify the spreading profiles to produ
regions of adverse mobility near the point of deposition a
near the advancing front. Regions of adverse mobility gra
ents have been invoked in the past to explain the sourc
instability in viscous fingering problems, for example. A
though the physics driving the Marangoni spreading prob
is significantly different than the physics driving viscous fi
gering phenomena12 ~i.e., Marangoni spreading is describe
by two coupled flow variables and requires no external d
ing force! this same general concept may help uncover
source of the fingering instability in Marangoni flows.

II. FORMULATION OF GENERAL BASE STATE

A. Base state

Consider a thin Newtonian liquid film of initial uniform
thicknessH0* (x* ,z* ,t* ), viscositym* , and densityr* rest-
ing on a flat solid substrate whose surface is located aty*
50. The coordinatex* denotes the horizontal coordinate,y*
the vertical coordinate andz* the transverse coordinate. Th
liquid film is partially covered by an insoluble surfacta
monolayer whose surface concentration,G* (x* ,z* ,t* ), var-
ies smoothly from its maximum value,Gm* , at the origin
x* 50, to a value of zero atx* 5L0* , as shown in Fig. 2. The
quantitiesH0* andL0* are used to scale all vertical and ho
zontal displacements, respectively. Upon deposition,
monolayer will spread rapidly and spontaneously, driven

FIG. 2. Schematic diagram of the spreading process.
Phys. Fluids, Vol. 9, No. 12, December 1997
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the initial spreading pressureP0* 5s0* 2sm* , wheres0* de-
notes the surface tension of the clean liquid surface andsm*
the surface tension of the contaminated liquid13 at the origin
of flow x* 50. We designate bye the ratio of the initial film
thickness,H0* , to the initial extent of surfactant coverag
L0* , which small parameter in lubrication theory satisfiese
!1.14 Initial gradients in surface tension of orderP0* /L0*
generate shear stresses at the interface of orderm* U* /H0* .
The characteristic velocity for the streamwise and transve
directions is, therefore,U* 5eP0* /m* , while the vertical ve-
locity is scaled byeU* . According to the lubrication ap-
proximation, the pressure is scaled byP* 5m* U* L0* /H0*

2.
Insertion of the Marangoni velocity,U* , into the pressure
scaling yieldsP* 5P0* /H0* , in which the force per unit
length,P0* , has effectively been converted into a force p
unit areaP* . The dimensionless surface pressure is defin
as s5(s* 2s* m)/P0* , which describes the ratio of th
driving force at any point on the film surface to the max
mum driving force. Introduction of these scalings into t
equations of incompressibility and momentum conservat
for the liquid support yields the following equations in d
mensionless form:

ux1vy1wz50, ~1!

052px1uyy1O~eRe,e2!, ~2!

052py1Bo1O~e2!, ~3!

052pz1wyy1O~eRe,e2!, ~4!

wherein the axial, vertical and transverse velocity fields
represented byu, v and w, respectively, and henceforth
subscripts refer to differentiation byx, y, z and t unless
otherwise stated. With this choice of scales the modifi
Bond number is defined asBo[(r* g* e2L0*

2)/P0* while the
modified Reynolds number is given by Re
[(r* U* H0* )/m* 5(r* P0* e2L0* )/m* 2. The parameterBo
represents the ratio of hydrostatic pressure to the Maran
stress whileRe represents the ratio of inertial forces to vi
cous forces, in whichU* is set by the velocity governing
Marangoni convection. SinceBo andReboth scale ase2, all
such terms are dropped from consideration in this anal
correct toO(e).

The boundary conditions used to solve Eqs.~1!–~4! dic-
tate no penetration and no slip at the solid wall as well as
balance of shear and normal stresses at the interface.
dimensionless no slip condition aty50 is

u5v5w50. ~5!

The tangential and normal stress conditions aty
5H(x,z,t), are given by

uy5sx , wy5sz , ~6!

p501O~e2!, ~7!

where the effects of interfacial curvature are neglected si
they only enter toO(e2) with the scalings chosen. The kine
matic condition at the interface described byvs5dH/dt,
wherevs represents the surface velocity in the vertical dire
tion, can be expressed in terms of the fluid flux as:
3647O. K. Matar and S. M. Troian
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Ht1~Huavg!x1~Hwavg!z50, ~8!

whereuavg andwavg represent the streamwise and transve
height averaged velocities. Similarly, mass conservation
the insoluble surfactant is expressed by

G t1~Gus!x1~Gws!z5
1

Pes
@Gxx1Gzz#, ~9!

whereG* has been scaled byGm* andus andws represent the
axial and transverse velocities aty5H(x,z,t). In Eq. ~9! the
modified surface Peclet number defined byPes

[(U* L0* )/Ds* 5(P0* H0* )/m* Ds* , where Ds* is the diffu-
sion coefficient of the surfactant along the interface, rep
sents the ratio of surfactant transport by Marangoni conv
tion to that by surface diffusion. In typical applications, t
mass transport by Marangoni convection far exceeds tha
surface diffusion. For typical experimental values ofP0*
540 dyn/cm, H0* 51023 cm, m51 cp and Ds* .1025

cm2/s, Pes.105. In what follows, we therefore concentra
on flow induced strictly by the balance of viscous and M
rangoni terms and treat all other mechanisms as s
dominant.

The dimensionless axial and transverse velocity fie
are obtained by integrating Eqs.~2! and ~4! subject to the
boundary conditions in Eqs.~5!–~7!:

u~x,y,z!5sxy, w~x,y,z!5szy. ~10!

Substitution of Eq.~10! into Eqs.~8! and ~9! in the limit of
infinite surface Peclet number yields the two important e
lution equations forH(x,z,t) andG(x,z,t), namely,

Ht1
1
2 ~H2sGGx!x1 1

2 ~H2sGGz!z50, ~11!

G t1~GHsGGx!x1~GHsGGz!z50. ~12!

A constitutive equation of state relatings to G is required to
close this pair of equations. The simplest such relation, v
in the dilute concentration limit, is given by

s~G!512G. ~13!

This linear equation of state approximates the expanded
factant monolayer as an ideal gas.13 When extending these
calculations to higher surfactant concentrations, a nonlin
equation of state is required.15

B. Self-similar solutions

Equations~11! and ~12! describe the Marangoni drive
spreading of an insoluble surfactant monolayer along the
face of a thin liquid film. Substitution of Eq.~13! into Eqs.
~11! and ~12! yields the evolution equations governing th
base state variables,H0(x,t) and G0(x,t), for one-
dimensional rectilinear spreading

H0t2
1
2 ~H0

2G0x!x50, ~14!

G0t2~G0H0G0x!x50. ~15!

In seeking similarity solutions which require global ma
conservation~so called similarity solutions of the first kind!,
we determine the solutionsH0 and G0 subject to the con-
straint
3648 Phys. Fluids, Vol. 9, No. 12, December 1997
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M ~ t !5E
0

R~ t !
G0 dx5M0tg, ~16!

whereR(t) represents the extent of surfactant contaminat
in time t. The choiceg50 corresponds to a finite amount o
deposited surfactant whileg.0 corresponds to a reservo
which supplies surfactant to the spreading film at a rate oftg.
Scale transformations which allow solutions of self-simi
form are

j5
x

R~ t !
, G0~x,t !5

g~j!

f ~ t !
, H0~x,t !5h~j!. ~17!

Self-similarity requires thattg5R f21, which reduces Eq.
~16! to

M05E
0

1

g~j!dj. ~18!

These variable transformations convert Eqs.~14! and~15! to

l1jhj1 1
2 ~h2gj!j50, ~19!

l1jgj1l2g1~ghgj!j50, ~20!

where all the explicit time dependence is clustered in
parametersl15 f RṘ and l25 ḟ R2. Eliminating all the ex-
plicit time dependence produces the scaling functions

R~ t !5Fl1

3

~11g!G
1/3

t ~11g!/3, ~21!

f ~ t !5Fl1

3

~11g!G
1/3

t ~122g!/3, ~22!

l25l1F122g

11g G . ~23!

The extent of spreading for a finite amount of surfactantg
50) reduces to the solutionR(t)5(3l1t)1/3 for rectilinear
geometry as previously shown.10,11,16,17 The caseg51/2
yields the spreading behaviorR(t);t1/2, whose base flow
solutions18 and stability characteristics9 have frequently been
discussed in the literature.

Equations~19! and ~20!, which describe the film thick-
ness and surface concentration profiles, cannot be integr
exactly for arbitrary values ofl1 andl2 . Simple analytical
solutions exist for the choiceg50 which determines tha
l25l1 . In this work we focus strictly on the spreading b
havior for the caseg50. This choice reduces Eq.~20! to the
form

~l1jg1jghgj!j50. ~24!

The solutions to Eqs.~19! and~24! for the film thickness and
concentration profiles require one boundary condition
h(j) and two boundary conditions forg(j). The two condi-
tions for g(j) are derived from consideration of the sprea
ing behavior nearj51. For quiescent conditions to be reco
ered far downstream, the surfactant concentration m
vanish ahead ofj51 such thatg(j>1)50. Integration of
Eq. ~24! across the boundaryj51 yields the jump condition
at the advancing front which determines the second bou
ary condition ong, namely,
O. K. Matar and S. M. Troian
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gj~j512!52
l1

h~j512!
. ~25!

This relation represents the magnitude of the surfactant c
centration gradient which develops at the front of a film th
has spread to a distanceR(t)5(3l1t)1/3. The concentration
gradient at this leading edge requires knowledge of the lo
film thickness and the mass of surfactant available
spreading. Full integration of Eq.~24! yields hgj52l1j
which, when substituted into Eq.~19!, gives

h~j!5Aj, ~26!

g~j!52
l1

A
j1B, ~27!

whereA5h(j512) and B5l1 /h(j512). The parameter
l1 is determined by substituting Eq.~27! into Eq. ~18! to
give

l152h~j512!M0 . ~28!

What remains to be calculated is the film thickness at
leading edge,h(j512), which is evaluated by requiring tha
the total spreading fluid volume remain constant. Marang
stresses shear the liquid film and create a linear film pro
according to Eq.~26!, which when integrated must yield th
initial fluid volume V051. The film thickness is found to
achieve a maximum value ofh(j512)52 which is twice
the film height of the initial quiescent film.

The self-similar base flow solutions for the spreading
a finite amount of surfactant are therefore

h~j!52j and g~j!5~l1/2!~12j!. ~29!

With l151/3, Eq. ~29! reduces to the similarity solution
first derived by Jensen and Grotberg.10 The dimensionless
surface velocity is proportional to2hgj5l1j, which de-
scribes the simple shear flow of a Marangoni driven film
the lubrication approximation. It can be shown that the s
face velocity in axisymmetric flow is smaller by a factor ofp
than in rectilinear flow due to the fact that the same amo
of surfactant must disperse over an ever increasing area
ducing overall smaller gradients in concentration. We exa
ine the stability of the spreading solutions in rectilinear g
ometry since it affords the largest driving force for spread
and is therefore expected to be most vulnerable to pertu
tions.

III. LINEAR STABILITY ANALYSIS

A. Perturbation equations

We have constructed simple analytic forms for the fi
thickness and concentration profiles in the limit that t
spreading process has occurred for a sufficiently long t
such that all memory of initial conditions is lost. We no
examine the linear stability of these self-similar profiles.
troduction of a two-dimensional perturbation into Eqs.~11!
and ~12! yields

h̃t5
1
2 ~H0

2G̃x12H0G0xh̃!x1 1
2 H0

2G̃zz, ~30!

G̃t5~G0G0xh̃1H0G0xG̃1G0H0G̃x!x1G0H0G̃zz, ~31!
Phys. Fluids, Vol. 9, No. 12, December 1997
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where the quantities decorated with ‘‘tilde’’ represent pert
bations from the base state. Since none of the coefficien
Eqs.~30! and ~31! depend explicitly on the transverse coo
dinatez, the perturbation is separable in this coordinate a
can be Fourier decomposed into the form

~ h̃,G̃!~x,z,t !5~H̃,G̃!~x,t !eiqz, ~32!

where q represents the disturbance wavenumber. Subs
tion of Eq. ~32! into Eqs.~30! and ~31! yields two coupled
partial differential equations that govern the evolution of
applied disturbance

H̃t5
1

2
~H0

2G̃x12H0G0xH̃ !x2
q2

2
H0

2G̃, ~33!

G̃t5~G0G0xH̃1H0G0xG̃1G0H0G̃x!x2q2G0H0G̃. ~34!

We seek once again solutions of self similar form. Since
applied perturbations will not necessarily evolve on the sa
time scale as the base state, we describe the disturb
functions by the following transformations:

H̃~x,t !5C~j,t !, G̃~x,t !5
F~j,t !

R~ t !
, ~35!

where the scaling ofF(j,t) by R(t) enforces self-similarity.
Other general scaling forms forG̃(x,t) will not yield a solv-
able set of equations without some additional external c
sure relation. Equations~33! and ~34! reduce to the form

C t5
Ṙ

R
jCj1

1

2R3 @~h2Fj12hgjC!j2~q2R2!h2F#,

~36!

F t5
Ṙ

R
~jF!j1

1

R3 @~ggjC1hgjF1hgFj!j

2~q2R2!hgF#, ~37!

whereR5t1/3. Without loss of generality, the coefficient o
R in Eq. ~21! has been set to unity by the choicel151/3.
Other choices ofl1 can simply be absorbed into the resca
ings in Eq.~41! to yield the same final result.

B. Quasi-steady-state approximation

The quasi-steady state approximation~QSSA! assumes
that the rate of change of disturbances far exceeds the ra
change of the base state. Inspection of the self-similar b
state reveals that the rate of change ofh(j) and g(j) de-
creases ast24/3 in rectilinear geometry. We can therefor
assume there exists some time,tqs , sufficiently far from t
50, beyond which the base state profiles can be regarde
stationary in the variablej. Within this approximation, the
temporal evolution which appears in the coefficients of E
~36! and~37! through the variableR(t) is effectively frozen
at R(tqs). Since the base state then only depends onj, the
coefficients of the two coupled equations are no longer tim
dependent and the solutions toC and F are separable in
time. As a result,C andF assume the form

~C,F!~j,t !5es̃~q,tqs!t~c,f!~j,tqs!, ~38!
3649O. K. Matar and S. M. Troian
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where s̃ is the quasi-static growth constant that depen
parametrically onq and tqs . Substitution of this expande
form into Eqs.~36! and ~37! gives

s̃c5
Ṙ~ tqs!

R~ tqs!
jcj1

1

2R~ tqs!
3

3@~h2fj12hgjc!j2~q2R2!h2f# ~39!

and

s̃f5
Ṙ~ tqs!

R~ tqs!
~jf!j1

1

R~ tqs!
3

3@~ggjc1hgjf1hgfj!j2~q2R2!hgf#. ~40!

We replace the base flow profiles,h and g, by the expres-
sions derived in Eq.~29! and effect the following three vari
able changes

s̃R3~ tqs!→s, q2R2~ tqs!→K2,
c

3
→c. ~41!

With these substitutions, Eqs.~39! and ~40! reduce to

sc5~2j2fj!j2c22K2j2f, ~42!

sf5~j~12j!fj2 1
4 ~12j!c!j2K2j~12j!f. ~43!

Since Eq.~42! determines an equation forc~j!, it can be
substituted into Eq.~43! to yield a single third order equatio
for f~j!, namely,

1
2 j2~12j!fjjj1j~22 5

2 j2~s11!~12j!!fjj

1~122j2 1
2 K2j2~12j!2~s11!~122j!!fj

1~s~s11!2K2j~12 3
2 j2~s11!~12j!!!f50.

~44!

The quasi-static growth constants represents the eigenvalu
of this linear ordinary differential equation. The real part
the eigenvalue,s r , determines the stability of the system
We seek the eigenmode corresponding to the root with
largest real part which signals the fastest growing unsta
mode.

C. Solution procedure

Equation~44! requires a numerical solution but the pr
cedure is complicated by the existence of two regular sin
lar points at the end points of the domain of integratio
namely,j50 andj51. To investigate the behavior of Eq
~44! in the vicinity of these points, we employ an expansi
suggested by the method of Frobenius

f~j!5~j2j j !
a j(

i 50

`

ai~j2j j !
i , j 51,2, ~45!

where j150 and j251. Solution of the indicial equation
corresponding to the termi 50 yields the solutions to the
prefactor exponenta150,0,2s11 anda250,1,3. We focus
3650 Phys. Fluids, Vol. 9, No. 12, December 1997
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on the values152s11,0 which produces an unbounde
solutionf~j! asj→0. This singular behavior near the origi
must be factored out from Eq.~44! before seeking numerica
solutions. The eigenfunctionf~j! is therefore redefined to b

f~j!5j2s11Y~j!, ~46!

to eliminate any numerical instabilities. Re-expressing E
~44! in terms of the well behaved functionY(j) gives

Yjjj52
b~j!Yjj1c~j!Yj1d~j!Y

a~j!
, ~47!

where

a~j!5j2~12j!,

b~j!5j@526j14s~12j!#,

c~j!54~s11!222j~s11!~2s13!2K2j2~12j!,

and

d~j!52s~s11!2K2j~122j!.

Equation~47! is solved subject to the condition thatY(j) be
regular at the boundaries. This condition allows a Tay
series expansion of the form

Y~j!5(
i 50

`

bi~j2j j !
i , j 51,2, ~48!

which when substituted into Eq.~47! and evaluated at the
boundary pointsj50,1 yields the boundary conditions

Yj~0!52
s

2~s11!
Y~0!, ~49!

Yjj~0!5
K22s~s13!

~2s13!2 Y~0!, ~50!

Yjj~1!522~s11!Yj~1!1@2s~s11!1K2#Y~1!.
~51!

Since Eq. ~47! is linear in Y(j), the solutions are only
known to within a multiplicative constant. For convenienc
the solutions are normalized by the choiceY(0)51.

D. Analytical solution for K 50 and s50

Equation~47! admits an analytical solution for the cas
K→0 ands50. In this infinite wavelength limit, the third
order differential equation reduces to the simplified form

Fj~12j!fj
~0!2

~12j!

2
~j2fe

~0!!jG
j

50, ~52!

where the superscript~0! denotes the solution for the neu
trally stable state. A single integration yields the equat
j2(12j)fjj

(0)5c1 wherec1 is a constant. Two further inte
grations yield a solution of the form

f~0!5c31c2j1c1~12j!lnS 12j

j D , ~53!
O. K. Matar and S. M. Troian
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wherec2 andc3 are two more constants of integration to
determined from boundary conditions. In this same limit, E
~42! can be used to derive the corresponding solution for
perturbed film thickness,c (0):

c~0!5~2j2fj
~0!!j54c2j12c1S 2j ln

j

12j
2

j

12j D .

~54!

Applying the constraint that both functionsc (0) andf (0) be
regular at the endpointsj50 and j51 necessitates th
choice c150. Furthermore, since all singular behavior h
been extracted fromf~j! through Eq. ~46! such that
f (0)(j)5jY(j), it follows that f (0)(0)50 sinceY(j) is a
regular and well behaved function inj. According to Eq.
~53! then, c350 and the analytical solutions are simply
the formf (0)(j)5c2j andc (0)(j)54c2j. Because the gov
erning equations are linear, the solutions are only known
within an overall constant which for convenience is chos
to bec251 such that

f~0!5j, ~55!

c~0!54j. ~56!

These analytical solutions provide a numerical check on
shooting technique used to solveY(j).

IV. RESULTS AND DISCUSSION

A. Numerical solutions

The third order differential equation forY(j) shown in
Eq. ~47! has been converted into an eigenvalue probl
which was solved with a standard shooting technique. T
numerical solutions were constructed by shooting away fr
j50 andj51 and applying the three boundary conditio
some small distanceDj away from each endpoint. One mu
shoot away from these two endpoints since the denomin
in Eq. ~47! vanishes atj50 and 1. The solutions forY(j)
are insensitive to the choice ofDj for Dj;O(1024) or
smaller. Simultaneously shooting away from both endpo
with the requirement thatY, Yj andYjj be continuous at the
midpoint j50.5 yields the condition about which the valu
of s are iterated to find the appropriate eigenvalue. Differ
matching points in the interval yielded the same solutions
fourth order Runge-Kutta algorithm was used as the ini
value solver and the step size was adjusted to ensure
continuity requirements atj50.5. Solutions toY(j) and s
were substituted into Eq.~46! and Eq.~42! to reconstruct the
full eigenfunctionsf~j! andc~j!.

In Fig. 3~a! is shown the dispersion curve,s(K2), gen-
erated from the shooting method. This curve was constru
by solving Eq.~47! for different values of wavenumberK2

varied in small increments of the order ofDK250.002. The
eigenfunction solutions varied smoothly as the wavenum
was increased indicating no sudden crossings from
branch ofs to another. In an effort to uncover any positiv
roots or any negative roots lying above the solution sho
the initial guesses fors were systematically varied in mag
nitude. For instance, in searching for the roots lying close
the pointK50, we tried initial guesses fors ranging from 0
to 2 in increments of 1024. In all cases, the solution alway
Phys. Fluids, Vol. 9, No. 12, December 1997
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~i! converged to the root shown in Fig. 3~a!, ~ii ! converged to
an additional branch that exhibits a maximum value ofs5
21.327 atK50 and continues decreasing, or~iii ! never con-
verged. This second branch is of little interest from a sta
ity standpoint and was not studied further. We were una
to find convergent solutions for initial guessess.2 irre-
gardless of the wavenumber. The solution plotted in Fig. 3~a!
therefore appears to belong to a single continuous branc

B. Characteristics of the dispersion curve and
associated eigenfunctions

The absence of any positive roots to the coupled lin
system of equations indicates that within the quasi-ste
state approximation, the self-similar base flow profile
h(j)52j and g(j)5l1(12j)/2, are linearly stable to in-
finitesimal perturbations. It is difficult to understand this r
sult on purely physical grounds especially since the mod
ling includes no explicit stabilizing mechanisms lik
capillarity or surface diffusion. The source of the stabilizin
mechanism can only be traced to the transverse Maran

FIG. 3. ~a! Dispersion relations(K2). ~b! Neutrally stable eigenfunctions
(s50) c andf for K250.
3651O. K. Matar and S. M. Troian
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convection established by local disturbances. To unders
more fully exactly how the transverse Marangoni contrib
tions can counteract disturbances of any wavelength, we
vestigate the shape of the eigenfunctionsc andf for differ-
ent regimes inK space. The dispersion curve shown in F
3~a! divides itself naturally into three regions labeled I,
and III, each reflecting a somewhat different character inc
and f. Region I spans the range 0<K2&3.2, region II the
range 3.2&K2&10, and region III the rangeK2*10.

We focus first on the eigenfunction solutions for infinite
long wavelength disturbances,K50, plotted in Fig. 3~b!.
The shooting technique correctly reproduces the analyt
solutions derived in Eqs.~55! and~56! for s50. These neu-
trally stable solutions increase linearly throughout the
main of integration 0<j<1, with perturbations in the di-
mensionless film thickness achieving a four fold increa
over perturbations in the dimensionless surfactant concen
tion. This result sheds light on the long wavelength appro
mation used in a previous stability calculation9 in which the
amplitude of the disturbance film thickness was assume

FIG. 4. Eigenfunctionsc andf nearK253.
3652 Phys. Fluids, Vol. 9, No. 12, December 1997
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be much smaller than the amplitude of the disturbance c
centration. These earlier studies predicted linearly unsta
flow. Although the base flow profiles being studied are d
ferent@i.e., R(t);t1/3 versusR(t);t1/2#, it now appears that
allowing both the surfactant concentration and the film thic
ness to undergo disturbances self-consistently produces o
all stable flow. Spreading behavior governed byR(t);t1/2

cannot be treated analytically as simply as theR(t);t1/3

case. At present there is no direct comparison one can m
between these two stability calculations.

It is interesting to note that in other thin film spreadin
problems, like the coating of a dry substrate by a liquid fi
subject to gravitational forces,9 centrifugal forces19 or sur-
face shear stresses,20 the linearized form of the equation o
motion for the film thickness is translationally invariant
the streamwise direction. This symmetry dictates that
eigenfunction solution fors50 be directly proportional to
the first derivative of the base flow profile. In contrast, t
linearized equations of motion for Marangoni driven flo
contain explicit dependence on the streamwise coordinatj,
as evident in Eqs.~42! and~43!. The eigenfunction solutions
are therefore not neatly related tohj and gj . Had this ex-
plicit dependence onj not been present, the associat
eigenfunctions would be flat throughout the interval of in
gration unlike the actual monotonically increasing ram
plotted in Fig. 3~b!.

For finite wavenumbers, the individual shape of t
eigenfunctionsc and f and their relation to each othe
changes significantly in each of the three regions. In Fig.
shown the eigenfunctions for wavenumbers ranging from
<K2<4.0. In order to magnify certain features nearK50,
the functionc is only plotted in the range 0<j<0.5. The
solutions change character upon traversing the valueK2

'3.2. With increasing wavenumber, the functionsc and f
increase in absolute magnitude for smallj and develop
strong curvature near the boundary pointsj50 andj51, in
contrast to the linear profiles forK250. Near a value of
K2'3.2 the functionc changes sign near the origin an
becomes increasingly negative whilef becomes increasingly

FIG. 5. Behavior ofYj(j) nearK2510.
O. K. Matar and S. M. Troian
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positive. The valueK2'3.2 signals a transition in behavio
which derives from the Frobenius expansionf
;j2s11Y(j), whereinf diverges for valuess,21/2, or
equivalently for wavevectorsK2*3.2. This singular behav-
ior at the origin creates corresponding singular behavior ic
as shown in Fig. 4.

Another change in the behavior of the eigenfunctio
occurs upon traversing region II into region III as predict
by the boundary condition in Eq.~49! which suffers a pole at
s521. Since the normalization condition was chosen to
Y(0)51, Eq. ~49! requires thatYj and thereforef~j! di-
verge at the origin whens521, which occurs forK2

'9.8. In Fig. 5 we show howYj(j) changes character fo
various choices of wavenumber lying on either side of t
transition point. AsK2 increases through this special poin
the functionYj(j) must suddenly change sign from positiv
to negative values. This change in sign causes a signifi
change in the behavior ofc andf as demonstrated in Fig. 6
For example, whereasc achieves negative values close to t
origin for K259.6 but is positive everywhere else in th
domain, the function switches sign and becomes everywh
negative after passing through the transition point.

FIG. 6. Eigenfunctionsc andf nearK2510.
Phys. Fluids, Vol. 9, No. 12, December 1997
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To visualize the overall effect of an infinitesimal distu
bance on the flow properties of a film driven by Marango
forces in each of the regions specified above, we plot in F
7 the complete linearized solution to the film thickness wh
is a superposition of the base state and the disturbance e
function extended in thez direction. Each figure demon
strates the typical behavior of the film thickness for so
choice of wavevector within each of the three regimes de
eated in Fig. 3~a!. Note that the solutions in Figs. 7~a! and~b!
maintain registry in the streamwise direction wherein poi
of maximum depression at the origin become points of hi
est elevation atj51 and vice versa, whereas the solution
Fig. 7~c! does not. Although the transient disturbances
sume the shape of slender fingers or rivulets throughout
domain of spreading, the flows in regions I, II, and III are
linearly stable and decay away exponentially in time. In
gions II and III, the magnitude of the perturbations near
origin is significantly larger than the magnitude of the pe

FIG. 7. Surface plots of the total film thickness:~a! region I (K251), ~b!
region II (K255) and~c! region III (K2515).
3653O. K. Matar and S. M. Troian
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turbations near the endpointj51, which is more clearly seen
from Figs. 6 and 8.

There exists an interesting complementary relations
betweenc andf in regions II and III which could possibly
have yielded unstable flow according to the following re
soning. Observe in Fig. 8 that near the origin, where the fi
thickness suffers appreciable thinning, the liquid mobil
will decrease substantially thereby retarding convection
fluid and surfactant in this region. Surfactant accumula
here to create a region of particularly low surface tension
demonstrated by the form off~j!. Transverse Marangon
stresses will further pull on this film causing it to thin eve
further. This mechanism should create strong corrugation
film thickness and create ‘‘fingered’’ patterns in the tran
verse direction. Unfortunately, this complementary behav
betweenc andf only exists in a very small region near th
origin and is apparently not significant enough to destabi
the flow. In the next section, we present results of an ene
analysis to quantify the relative magnitude of stabilizing a
destabilizing contributions to the overall flow behavior.

C. The energy method

Within our simplified model only Marangoni stress
generated by the presence of surfactant drive the spontan
spreading process. For the unperturbed 1-D flow, th
stresses convect fluid and surfactant downstream rapidly
efficiently. The application of an arbitrary 2-D disturban
creates additional stresses with subsequent transport of
and surfactant in the transverse direction. According to
linear stability analysis, this transverse flow successfu
dampens disturbances of all wavenumbers. By decompo
the flow into its constituent contributions we can better a
preciate the relative scale of streamwise versus transv
mass flux for disturbances of self-similar form.

The mechanical energy generated by an applied pe
bation can equivalently be expressed as an inner produ

FIG. 8. Illustration of the complementary relation betweenc and f for
K255.
3654 Phys. Fluids, Vol. 9, No. 12, December 1997
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the disturbance film thickness or the disturbance concen
tion according to

E5
1

2 E
0

1

C2 dj5
1

2
^C,C&, or ~57!

E5
1

2 E
0

1

F2 dj5
1

2
^F,F&. ~58!

Recasting Eqs.~36! and~37! in compact operator form give

C t5L̃1@C,F# ~59!

and

F t5L̃2@C,F#, ~60!

where the linear operatorsL̃1 andL̃2 represent all the terms
on the right hand side of Eqs.~36! and~37!. The subscriptt
denotes differentiation with respect to the explicit time d
pendence. The rate of energy production,dE/dt5^C,Ċ&
5^F,Ḟ&, is calculated by taking the inner product of E
~59! with C or the inner product of Eq.~60! with F to give

dE

dt
5s̃^C,C&5^C,L̃1@C,F#&, ~61!

or

dE

dt
5s̃^F,F&5^F,L̃2@C,F#&. ~62!

The normalized dimensionless rate of energy productionĖ

5(dE/dt)/E, is therefore calculated to be

Ė

2
5s5

^c,L1@c,f#&

^c,c&
, ~63!

or

Ė

2
5s5

^f,L2@c,f#&

^f,f&
. ~64!

The termŝ c,L1@c,f#& and^f,L2@c,f#&, whereL1 and
L2 are the right hand sides of Eqs.~42! and ~43!, comprise
four separate terms shown in Table I. The first two ter
represent Marangoni convection of liquid in the streamw
and transverse directions, while the last two terms co
spond to Marangoni convection of surfactant in the strea

TABLE I. Physical mechanisms associated with each term in the ene
method.

Terms Expression Physical mechanism

1 *0
1@c(2j2fj)j2c2#dj Marangoni convection of

fluid layer in thej direction.
2 22K2*0

1@j2cf#dj Marangoni convection of
fluid layer in thez direction.

3 *0
1@f~j~12j!fj2

1
4 ~12j!c!j#dj Marangoni convection of

surfactant monolayer
in the j direction.

4 2K2*0
1@j(12j)f2#dj Marangoni convection of

surfactant monolayer
in the z direction.
O. K. Matar and S. M. Troian
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se
wise and transverse directions. These terms arise from
coupling of the 1-D spatially inhomogeneous base flows w
the applied 2-D disturbance.

Results of energy analysis. The normalized dimension
less rate of energy production for each of the four terms
plotted in Fig. 9, along with their summation, which mu
exactly equal the value 2s for each wavevector selected. Th
vertical dotted lines indicate the transition points discus
earlier for whichs520.5 or21. Positive integral quantities
destabilize the flow while negative integral quantities p
vide a stabilizing influence. The quantityI i represents the
energy integral associated with termi in Table I. Inspection
of these different terms automatically reveals which con
butions would have to be amplified or minimized signi
cantly to produce positive roots in the dispersion cu
s(K2).

I 1 exhibits two maxima andI 2 two minima precisely at
the location of the transition points and reflect the change
behavior inc and f which occurs upon traversal of thes
points. These changes do not affect the behavior ofI 3 andI 4

as strongly, although there occurs a slightly larger increas
the amplitude of these terms near the second transition p
as compared to the first. This overall behavior is expec
since the amplitude of the eigenfunctions corresponding
the film thickness, which affects termsI 1 andI 2 , is typically
much larger than the amplitude of the eigenfunctions ass
ated with the surfactant concentration, which affects termI 3

and I 4 . What is clearly noticeable in the figure is that th
majority of the energy contributions are weighted toward
negative end of the energy spectrum. TermsI 2 andI 4 , which
reflect Marangoni convection of fluid and surfactant in t
transverse direction, are negative for all wavevectors
large enough to offset any destabilizing effects in the stre
wise direction.

Further inspection of termsI 1 andI 2 associated with the
liquid flux reveals that that the eigenfunction pairs for whi
cf,0, cfj.0 and cfjj.0 maximize the destabilizing
term I 1 and minimize the stabilizing termI 2 . The eigenfunc-
tion solutions for K2*3.2 or equivalently fors,20.5

FIG. 9. Variation ofĖ /2 with K2. Vertical dotted lines reflect solutionss
520.5 ands521.
Phys. Fluids, Vol. 9, No. 12, December 1997
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nicely satisfy these inequalities but only in a very limite
range about the originj50. Outside this range the inequal
ties are not satisfied and the contributions to the flow
overall stabilizing. For unstable flow this Marangoni drive
system must generate eigenfunction pairs with the com
mentary nature indicated by the three inequalities in wh
case it can tilt the energy balance towards the positive va
of the energy spectrum. As summarized in the last sectio
local decrease in film thickness accompanied by a local
crease in surfactant concentration will provide the pro
scenario for producing a lateral fingering instability.

What direction might one pursue in order to model
system of equations that can produce and exploit
complementarity betweenc andf? We have shown that th
unfavorable results of the stability analysis are direc
caused by the linear behavior of the self-similar solutions
Eq. ~29! for which an increase in film thickness is accomp
nied by a decrease in surfactant concentration. All dist
bances eventually die away due to the increasing liquid m
bility provided by the linearly increasing ramp in film
thickness from 0<j<1. In order to localize disturbance
behind the moving front, the film thickness must somewh
suffer a decrease in thickness which will further be agg
vated by a consequent increase in surfactant concentra
There is another fluid mechanical problem, namely Saffm
Taylor flow,12 for which regions of adverse mobility gradien
produce unstable fingering configurations. As an example
this flow, consider the case of a gas penetrating into a
cous liquid sandwiched between two plates of const
separation. The average fluid velocity isuST52(b2/
12m)dP/dx, whereb is the plate spacing,m the liquid vis-
cosity, anddP/dx the local pressure gradient. Since the ga
eous phase experiences a decrease in mobility when pen
ing into the more viscous medium, it can easily be sho
that the front separating the two regions of differing mobil
becomes linearly unstable and propagates fingers into
viscous liquid. For the case of a viscous liquid penetratin
gas, the front is stable. We have shown that the aver
velocity of a thin film sheared by Marangoni stresses isuM

52(h/2m)dG/dx wherein the quantityh/2m can be re-
garded as the mobility factor. Although in our system t
viscosity is constant throughout, a local decrease in the
thicknessh can effectively lower the local film mobility.
Appealing to this concept of adverse mobility, we descr
what other forces can be included in the spreading prob
to produce exactly such regions of reduced mobility.

The inclusion of capillarity and surface diffusion into th
equations of motion obviates the possibility of finding simp
analytic self-similar solutions for the unperturbed flow, a fa
which eventually complicates the linear stability analys
Nonetheless, the method of lines21 can be used to solve th
equations of motion numerically in the presence of the
additional forces, as first discussed by Gaver and Grotber22

Not only do these forces help smooth numerical instabilit
associated with the sharp fronts created by Marang
stresses alone, but they also change the character of th
lutions from simple ramp-like behavior over a finite doma
to a more complex, spatially inhomogeneous structure
semi-infinite extent. It may seem that the addition of the
3655O. K. Matar and S. M. Troian
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two forces will only further stabilize the flow. We propos
however, that the change in character of the form of
solutions produces regions of adverse mobility known to
stabilize the flow in the Saffman-Taylor problem.12 We have
plotted in Fig. 10 the self-similar solution for the dimensio
less film thickness from Eq.~29! along with a numerical
solution for the film thickness profile with the inclusion o
capillarity and surface diffusion. As expected, this numeri
profile more closely resembles experimental observations
more importantly, it suffers two regions of adverse mobil
gradients, namely the region near the point of surfact
deposition at the left and the region where the sharp adv
ing front joins the thinner undisturbed clean film at the rig
We are presently investigating the linear stability of the
numerically generated profiles to uncover if either is vuln
able to finger formation in the transverse direction.

V. CONCLUSION

We have investigated within the lubrication approxim
tion the base flow profiles and linear stability for the rec
linear spreading of an insoluble surfactant along a thin liq
film of higher surface tension. In the limit in which the spo
taneous spreading is only controlled by Marangoni stres
the unperturbed profiles for the film thickness and surfac
concentration can be computed analytically. The profi
chosen for study are self-similar solutions of the first ki
corresponding to global surfactant mass conservation. In
frame of reference, since the film thickness is a linearly
creasing function while the surface concentration is a linea
decreasing one, the velocity field describes a simple sh
flow. This flow leads to severe thinning of the fluid lay
near the surfactant deposition point and a rapidly advanc
rim at the leading front, of thickness twice the undisturb
height. This general shape in film thickness bears close
semblance to experimental observations.2

FIG. 10. Film thickness profiles for~i! linear self similar solution governed
by Eq. ~29! and ~ii ! numerical solution including capillarity and surfac
diffusion for the case ofCa51024, Pes55.103 and dimensionless timet
531.
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The linear stability of the disturbance equations is cal
lated within the quasi-steady state approximation~QSSA!,
which assumes that the rate of change of the base sta
much slower than the rate of change of any disturbance. T
approximation leads to a coupled eigenvalue problem wh
largest real root is identified as the quasi-static growth r
for the most unstable mode. Results obtained from the QS
analysis determine that the coupled system of equation
linearly stable to 2-D disturbances of all wavenumbers. 3
visualizations of the complete linearized solution indica
finger like protrusions throughout the spreading doma
however they decay away exponentially in time to restore
film thickness to its original ramp-like profile. The fact th
the calculations in rectilinear geometry, which provides t
largest impetus for Marangoni driven spreading, yield l
early stable flow strongly suggests that an additional cha
teristic of the flow must be included in future analyses.

An energy decomposition reveals how Marangoni co
vection in the transverse direction successfully stabilizes
system against infinitesimal 2-D perturbations. The terms
sponsible for destabilizing the flow are most dominant in
rangeK2*3.2 but only occur within a narrow range abo
the origin j50. We have identified that eigenfunctions sa
isfying the inequalitiescf,0, cfj.0 andcfjj.0 over a
much larger range inj can potentially destabilize the overa
flow. We describe a way to enhance the complementary
ture of the eigenfunctions reflected in these inequalities
introducing into the equations of motion the additional su
dominant forces of capillarity and surface diffusion. The i
clusion of these terms changes the shape of the base
profiles significantly to create two regions where the fi
thickness thins substantially thereby reducing the flow m
bility. In analogy with the Saffman-Taylor problem,12 the
creation of adverse mobility gradients can possibly desta
lize the flow.

There exist other avenues of inquiry regarding the s
bility of a Marangoni driven spreading film. For exampl
since the velocity profile for a thin film driven strictly b
Marangoni stresses~no capillarity or surface diffusion effec
tive! is an example of a thin film under simple shear, the flo
dynamics may turn out to belinearly stable, as shown by
Romanov23 and others for planar Couette flow. One shou
then simulate the fully 3-D flows and numerically investiga
the flow behavior to finite amplitude disturbances, as pr
ently underway. Also, since the operatorsL1 and L2 are
non self-adjoint, we are simultaneously conducting a tr
sient growth analysis24 to determine if certain modes grow
sufficiently in the early stages of spreading to activate a la
non-linear response. We hope that our present linear stab
analysis of the self similar solutions provides a provoki
starting point into the stability considerations of Marango
driven spreading.
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