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ABSTRACT

Within lubrication theory, we investigate the hydrodynamic stability of a thin surfactant
coated liquid film spreading strictly by Marangoni stresses. These stresses are generated
along the air-liquid interface because of local variations in surfactant concentration. The
_evolution equations governing the unperturbed film thickness and surface surfactant concen-
tration admit simple self-similar solutions for rectilinear geometry and global conservation
of insoluble surfactant. A linear stability analysis of these self-similar flows within a quasi
steady-state approximation (QSSA) yields an eigenvalue problem for a single third-order
nonlinear differential equation. The analysis indicates that a thin film driven purely by
Marangoni stresses is linearly stable to small perturbations of all wavenumbers. The in-
sights gained from this calculation suggest 2 flow mechanism that cen potentially destabilize
the spreading process.

INTRODUCTION

The spontaneous spreading of surface active solutions along a liquid support of higher
surface tension, so called Marangoni spreading, plays a significant role in processes from
industry to daily life, including detergency, optical coating manufacture, lubrication, and
aerosol delivery of bronchodilating drugs. As an example of a Marangoni spreading process,
many premature infants develop a respiratory distress syndrome at birth if their lungs have
not sufficiently matured to produce adequate quantities of pulmonary surfactant. This sub-
stance reduces the surface tension of the liquid which lines the alveoli and lung airways and
its deficiency can give rise to respiratory difficulties associated with airway closure, decreased
lung compliznce and mechanical damage of the airway linings. An effective technique for
the treatment of this condition is to deliver surfactant externally through inhalation of sur-
factant in aerosol form [1]. This process can accurately be modeled as surface active liquid
droplets spreading along a thin water based film [2-5].

Marangoni driven spreading occurs spontaneously and rapidly. Variations in the concen-
tration of surface active material produce surface tension gradients at the air-liquid interface.
Such gradients create surface stresses which induce motion in the spreading film and liquid
support in the direction of increasing surface tension. It has been shown experimentally and
theoretically that such stresses lead to the formation of a thinned region near the surfactant
deposition point and a subsequent film thickening at the advancing front [2-10]. Within the
past few years, the description of the unperturbed uniform spreading process has been the
subject of considerable interest. The base state equations have been expanded to include
many of the forces affecting thin film flow including Marangoni stresses, surface diffusion,
capillarity, gravity, solubility and van der Waals forces [2-5]. In addition, the spreading pro-
cess has been extended to several geometries and to cases for which the surfactant reservoir
can provide either a finite or infinite amount of material.

Experiments have revealed the existence of 2 new fingering instability near the point of de-
position [6-10] and at the advancing front [11] of thin surfactant coated water films spreading
on a thin water support. Though modeling efforts have concentrated on the uniform spread-
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ing process, the stability of the system of equations describing spontaneous Marangoni driven
spreading has received surprisingly little attention. We would like to determine whether lin-
ear stability analysis can uncover unstable flow and subsequent finger formation near the
thinned region upstream of the initial advancing front. A much simplified linear stability
analysis within a long wavelength approximation has suggested that Marangoni driven films
are susceptible to perturbations in the thinned region [5]. In this work the unperturbed
flow was modeled as a spherical cap of liquid coated with insoluble surfactant spreading on
an uncontaminated layer of the same liquid. Allowing only concentration disturbances and
assumning that the surfactant reservoir provided unlimited material, the flow was shown to
be unstable to perturbations near the surfactant deposition point. Within this model, both
Marangoni and capillary effects were included.

The work presented below provides a more complete and rigorous linear stability anal-
ysis without the approximations used previously. We investigate flows driven strictly by
Marangoni stresses (with no capillary effects) in order to isolate the dominant source of
unstable flow. The possibility of an instability arising solely from Marangoni flow and not
capillary driven flow is studied by considering the spread of a surfactant monolayer. With
only one mechanism present, the base flow profiles demonstrate simple and analytical self-
similar form. The linear stability analysis of these profiles includes fluctuations in the film
thickness and surfactant concentration, both of which are treated self-consistently. We show
below that such self-similar profiles are stable to linear perturbations of all wavenumbers.
With the insight gained from this analysis, we propose a2 mechanism which can enhance
disturbances in the flow to destabilize the system.

PROBLEM FORMULATION
Base State

Consider a thin Newtonian liquid layer of viscosity p* and density p* partially covered
with surfactant and resting on a solid substrate. The asterisk denotes dimensional quanti-
ties. The aspect ratio of initial film thickness, H,*, to the horizontal extent of the initial
surfactant distribution, L, is denoted by &, the small parameter characteristic of the lu-
brication approximation. The difference in surface tension between the surfactant free, o.",
and contaminated liquid surfaces, o,*, is given by the spreading coefficient II* = 0,* — o1
Initial gradients in surface tension of order II*/L" generate a shear stress at the interface
of order p*U*/L* that drives the spreading. From the shear stress balance at the interface
emerges the velocity scaling U/* = ellI"/p*. The horizontal and transverse coordinates, z*
and z°, are scaled by L* while the vertical coordinate y* is scaled by H,*. The axial and
transverse velocities, u* and w"®, are scaled by U* and the vertical velocity, v*, by eU*. Time
is rescaled by p*L*/eTl* and pressure by II*/H,*. The lubrication approximation dictates
that £ << 1 and eRe << 1, where Re = gUH 5‘;’%1}— is a modified Reynolds number.
The dimensionless surface tension is taken to be o = (o — 0*m) /(0% — 0"m).

Introduction of the above scalings into the equations of mass and momentum conservation
yields the following dimensionless evolution equations to leading order in €:

uy + v, +w: =0. (1

P. = uy +O0(eRe, ), (2)

P, = 0+ o(eY), (3)

P, = wy +O(eRe,e?). (4)
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The no slip boundary condition at y = 0 demands that u© = v = w = 0, while the tangential
and normal stress conditions at the interface y = H(z, z,1), demand that u, = o=, w, = o,
and B = 0+ O(£?). Integration of Egs. (2) and (4) subject to the boundary conditions yields
a simple Couette type velocity profile for the spreading film. Mass conservation for the liquid
support and insoluble surfactant require H;+V-Q = 0 and T, +V-(Tus) = F—‘—ﬁV’I‘, where §
represents the dimensionless liquid flux, I'(z, z,) is the surface surfactant concentration and
Uy is the surface velocity vector. Substitution of the velocity profile into these equations yields
the evolution equations for the film thickness, H(z, z,t), and the surfactant concentration,
I(z, 2,t) where or = 80 /8T

1
H + 5V-(H20FP=)=0, (5)

: Vi =0. (6)

I: + V-(CHoeTs) - 5

The linear equation of state, & = 1 —T', suitable for dilute concentrations couples the two
equations. More complex equations of state can be introduced for concentrated solutions.
The modified Peclet number, Pe, = %I‘ = l:—g:— represents the ratio of bulk Marangoni
convection to surface diffusion. Since the convection process always dominates spreading
by surface diffusion, we consider the limit :.;‘; — 0. For a finite surfactant reservoir, then,

Egs.(5) and (6) admit the following self-similar solutions for rectilinear geometry [4]:

Hfet) = KO =2¢ Tat)= 28 =2mi-g) . ™

> where R(t) = (3At)§. The parameter A = 4 M, where M,
is the total mass of surfactant deposited on the liquid support. Inspection of this solution
reveals that the rates of change of h(£) and g(¢) decrease as ¢~#3. This observation justifies
the use of the quasi steady-state approximation in the linear stability analysis.

The self similar variable £ = %

Linear Stability Analysis and Quasi-Steady State Approximation (QSSA)

We appeal to linear stability analysis and propose a normal mode form for the applied
perturbations. Since the base flow solutions change with position and time, the meaning of
the stability of this system remains somewhat ambiguous. As is normally done with such
flows, we first investigate the stability within the QSSA for which the perturbations are as-
sumed to evolve on a faster time scale than the base state. The normal mode perturbations
of wavenumber K, chosen as H(z, z,t) = U(£,t)e'** and G(z, 2,1) = %%le"x‘, are substi-
tuted into Egs.(5) 2and (6). The coupled pair of PDE’s governing the disturbances therefore
becomes

R 1 K? ,

U = ZE¥e+ oo (8 + 2hoe) - o178, (8)
R 1 K?

& = L(62)c + 5(99eY + hge® + hge)e — -ho®. (9)

In accordance with the assumptions of the QSSA, we choose a time {,,, sufficiently far from
% = 0 for memory of initial conditions to be lost, beyond which the base flows remain frozen
in time. The time dependent coefficients in Eqs.(8) and (9) are therefore evaluated at ¢ = i4,.
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The disturbances ¥ and & are therefore only spatially inhomogeneous and assume the form
(@, 8)(€,t) = eKitasl(1h, $)(¢,t,.) where o is the quasi-static growth constant. Combination
of this form with Eqs.(7), (8) and (9) and the variable transformations o — oR(t)?,
K — (KR(tq,))z, and 1 — Ay, gives a single nonlinear third order equation for the rescaled

dimensionless surfactant concentration:
L1~ )b +E(2 - 56— (0 + (1~ EDdee +
(1 -2~ sKE(1- €)= (e + 11 -26)de +
(o(o+1) ~ K& ~ 36~ (+1)(1 =) = 0 (10)

Eq.(10), which has regular singular points at £ =0 and £ = 1, must be solved numerically
subject to regularity conditions at the boundaries [12]. Removing the singular point at the
origin by substituting the transformation 4(¢) = £2741Y(£) into Eq.(10) gives

a(§)Yeee + b(€)Yee + () ¥e + d({)Y =0 (11)

where the coefficients are defined by a(£) = £*(1 — &), b(¢) = é(5 — 6¢ + 4o(1 = ),

c(€) = 4o +1)* - 2o +1)(20 +3)¢ — K¢} (1—¢) and d(f) =20(c 7 1)— Kf(l —2£). The
quantity 2o + 1 represents the so-called indicial exponent in Frobenius expansions. Num_er-
ical solutions of Eq.(11) are constructed for different values of X using a standard .shootmg
method by shooting away from the boundaries to a fitting point within the domain. .Con-
tinuity of ¥, Ye and Yge at the fitting point yields the conditions which form the basis for

iterative solutions to the eigenvalue o.

RESULTS AND DISCUSSION

Fig. 1 shows the relation between the quasi-static growth rate, o, and the Wavenun}ber of
the perturbation, K. Since ¢ < 0 always, the spreading process is stable to perturbations of
all K within the approximations used. An interesting feature of these stable eigeufunctio?s
is the complementary relation that develops between 1 and ¢ near the origin as shown in
Fig. 2. In particular, as the disturbance film thickness increases, the disturbance surfac-
tant concentration decreases. The physical reason for this inverse relation is that regions of
greater film thickness experience a larger mobility thereby facilitating surfactant tra._nsport
and decreasing the local surfactant concentration. Apparently the disturbances readjust so
as to stabilize any perturbations in film thickness or surfactant concentration.

In order to visualize the three-dimensional flow, the perturbations are superimposed upon
the base state and extended periodically in the z direction. The amplitude of the perturba-
tions is exaggerated in order to emphasize the formations created by the n.iistflrbanr:'e-s.' T]?e
corrugated flow profiles shown in Figs. 3, 4, 5 and 6 resemble ﬁngeringjhke instabilities in
other systems but for this situation, the flow is stable. As shown in Figs. 4 and 6, large
wavenumber disturbances become increasingly localized near the origin. This is consistent
with the transformation ¢ = £2°+1Y which requires that both 1 and ¢ become increasingly
singular at the origin as o becomes more negative. (The interested reader can find more
details of this analysis in a forthcoming publication [12].)
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Fig. 6 Total surfactant concentration, I" (K=15).

Fig. 5 Total surfactant concentration, I (K=3).

It proves instructive to consider the average velocity of the disturbance flow, #(¢) =
— {¢¢. Examination of this equation suggests a mechanism for destabilizing the ﬂow pro-
ﬁles Regions in which both 4 > 0 and ¢¢ < 0 can enhance the local film velocity @ thereby
advancing any protrusions in the fow. Inspection of Fig. 2 reveals that the above condition
is never satisfied. In particular, both ¢¢ < 0 and 4 < 0 near the origin while bath ¢; > 0 and
% > 0 downstream. The dominant terms, ¥ < 0 near the origin, and $¢ > 0 downstream, are
therefore very effective in stabilizing the flow. We have also performed an energy analysis to

241

determine which terms in the disturbance flux enhance perturbations and which terms re-
tard them [12]. Not surprisingly, perhaps, Marangoni convection in the streamwise direction
can destabilize the flow while Marangoni convection in the transverse flow direction always
stabilizes the fluid redistribution. The energy analysis confirms the requirements cited above
for conditions under which the flow will be unstable.

CONCLUSIONS

A linear stability of the self-similar profiles governing the long time spreading behav-
jor of insoluble surfactant on a thin liquid support has been shown to be stable for all
wavenumbers within a QSSA. The Couette-like velocity profiles studied here do not contain
an appropriate mechanism for destabilizing the spreading process. The disturbance flow,
nonetheless, produces surface corrugations resembling fingering instabilities in other flow
phenomena. Flow profiles for which the disturbance film thickness is positive while the sur-
factant concentration gradient is negative could create unstable flow. We are investigating
such a possibility by probing the stability characteristics at earlier times than those studied
here and by including the effects of capillarity and surface diffusion.
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