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Spreading of a surfactant monolayer on a thin liquid film: Onset
and evolution of digitated structures

Omar K. Matara) and Sandra M. Troianb)

Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544

~Received 16 July 1998; accepted for publication 30 December 1998!

We describe the response of an insoluble surfactant monolayer spreading on the surface of a thin
liquid film to small disturbances in the film thickness and surfactant concentration. The surface
shear stress, which derives from variations in surfactant concentration at the air–liquid interface,
rapidly drives liquid and surfactant from the source toward the distal region of higher surface
tension. A previous linear stability analysis of a quasi-steady state solution describing the spreading
of a finite strip of surfactant on a thin Newtonian film has predicted only stable modes.@Dynamics
in Small Confining Systems III, Materials Research Society Symposium Proceedings, edited by J. M.
Drake, J. Klafter, and E. R. Kopelman~Materials Research Society, Boston, 1996!, Vol. 464, p. 237;
Phys. Fluids A9, 3645~1997!; O. K. Matar Ph.D. thesis, Princeton University, Princeton, NJ, 1998#.
A perturbation analysis of the transient behavior, however, has revealed the possibility of significant
amplification of disturbances in the film thickness within an order one shear time after the onset of
flow @Phys. Fluids A10, 1234~1998!; ‘‘Transient response of a surfactant monolayer spreading on
a thin liquid film: Mechanism for amplification of disturbances,’’ submitted to Phys. Fluids#. In this
paper we describe the linearized transient behavior and interpret which physical parameters most
strongly affect the disturbance amplification ratio. We show how the disturbances localize behind
the moving front and how the inclusion of van der Waals forces further enhances their growth and
lifetime. We also present numerical solutions to the fully nonlinear 2D governing equations. As time
evolves, the nonlinear system sustains disturbances of longer and longer wavelength, consistent with
the quasi-steady state and transient linearized descriptions. In addition, for the parameter set
investigated, disturbances consisting of several harmonics of a fundamental wavenumber do not
couple significantly. The system eventually singles out the smallest wavenumber disturbance in the
chosen set. The summary of results to date seems to suggest that the fingering process may be a
transient response which nonetheless has a dramatic influence on the spreading process since the
digitated structures redirect the flux of liquid and surfactant to produce nonuniform surface
coverage. ©1999 American Institute of Physics.@S1054-1500~99!02001-7#
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Surfactant molecules play a vital role in many biological
and industrial processes because of their native ability to
lower surface tension in proportion to their concentra-
tion. Their presence greatly improves the wetting and
spreading capability of commonplace substances like
inks, paints, and herbicides. Lung surfactants produced
in the alveoli are critical in maintaining lung compliance.
A deficiency in lung surfactant production, for example,
is known to cause pulmonary edema and other respira-
tory difficulties. When surfactant molecules contact a liq-
uid surface of higher surface tension, a shear stress de
velops at the air–liquid interface in proportion to the
gradient in surfactant concentration. This stress forces
liquid and surfactant to flow toward regions of higher
surface tension and in the process strongly deforms the
underlying liquid film. Experiments by several groups
†Chem. Eng. Commun. 13, 133 „1981…; Phys. Rev. Lett.
62, 1496„1989…; Langmuir 11 , 87 „1995…; Phys. Fluids A

a!Dept. of Chemical Engineering and Chemical Technology, Imperial C
lege, London, England SW7 2BY.

b!Correspondence should be e-mailed to SMT at stroian@princeton.ed
1411054-1500/99/9(1)/141/13/$15.00
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7, 2640 „1995…; Faraday Discuss. 104, 307 „1996…‡ have
shown that the spreading of surfactant molecules on
athin liquid film often produces unusual digitated struc-
tures near the region of initial contact. We briefly review
theoretical efforts using linear stability analysis to un-
cover the source of digitation. We then discuss results
from transient growth analyses and direct numerical
simulations. The focus of this work rests with the tran-
sient spreading behavior — how do small disturbances
influence the spreading process at early times? Both the
transient and nonlinear studies highlight the importance
of regions in the film thickness which thicken „at the
monolayer advancing front… or thin „at the surfactant
source… in response to the evolving shear stress and
whose curvature and higher derivatives becomes sub
stantial. Our studies reveal that the surfactant distribu-
tion which develops during the spreading event produces
a liquid layer which is highly susceptible to spanwise dis-
turbances. This corrugation is sustained for several shear
times but eventually decays away. Although the distur-
bance speed and mobility is decreased in the thinnest re
gions of the film, the additional presence of van der
Waals forces which promote thinning, re-amplify decay-
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ing disturbances, increase their lifetime, and produce
digitated liquid structures.

I. INTRODUCTION

Surfactant molecules placed at an air–liquid interfa
will spontaneously spread to cover regions of higher surf
tension thereby reducing the internal free energy of the liq
system. The surfactant concentration profile and the de
mation in film thickness, as well as the speed and uniform
of coverage, are critical factors which affect many coat
processes. Empirically, it is well known that surfactant ad
tives can significantly improve wettability and spreadi
rates. Perhaps less understood until recently is the sprea
behavior of a surfactant coated film. Least understood are
unusual fingering patterns which sometimes occur in sur
tant films soon after spreading commences. In the absenc
disturbances the spreading process can be simply expla
Regions of the air–liquid interface rich in surfactant expe
ence a lower surface tension whose magnitude is pro
tional to the local concentration. Gradients in the surfa
concentration at the air–liquid interface give rise to gradie
in surface tension which produce a shear stress on the li
film. This stress forces liquid and surfactant to flow towa
regions of higher surface tension, a process described as
rangoni driven flow.1 Experimentally and theoretically, it ha
been shown that surfactants spreading on a thin liquid
~whose lateral extent greatly exceeds its thickness! will drive
fluid into a thickened and rapidly advancing ridge with su
sequent thinning near the original line of contact between
clean surface and surfactant.

Various experimental studies2–6 have shown that once
the spreading of surfactant commences, the film thickn
near the source region begins to thin and develops a digit
appearance as shown in Fig. 1. The curve describing
perimeter of the pattern shown in Fig. 1~a! has been mea
sured to have a fractal dimensionD f'1.7, a value which
remains constant in time.7 The liquid streamers advance ov
the surface by continually bifurcating at the tips. Althou
the physical mechanism controlling the spreading proces
different than the one responsible for unstable miscible
immiscible viscous fingering,8,9 the patterns in both case
appear similar in evolution and shape. For example,
finger-like protrusions shown in Fig. 1 also undergo late
spreading, shielding, and tip-splitting, features characteri
of viscous fingering patterns. The surfactant patterns
known to occur quite easily and have been found un
many different experimental conditions including spread
in rectilinear4,5 or axisymmetric geometry,2,3,6 spreading
from a source held at constant concentration4,5 or from a
finite reservoir,2,3,6 spreading on films ranging in thicknes
from microns2–6 to millimeters,10 with soluble2,4,10 or
insoluble3,5,10 surfactants of various head group charge, a
with a surfactant source either above2,3,10 or below3,10 the
critical micelle concentration. This latter concentration d
fines the point at which the air–liquid interface can no long
accommodate surfactant thereby forcing excess surface
ecules into the bulk liquid to form micellar clusters.

During the past several years a lubrication model
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been developed to describe the spreading behavior of a
factant film on a thin liquid layer. The surfactant can
delivered either as a hemispherical cap at cons
concentration11 or as a monolayer12–17 emanating from a fi-
nite or infinite reservoir. This original model has been e
tended to include not only Marangoni stresses and capilla
but also gravity, surface diffusion, bulk diffusion, van d
Waals forces, and the presence of endogenous~pre-existing!
surfactant on the initial liquid film. The base state solutio
~solutions in the absence of disturbances! governing the be-
havior of the film thickness during the spreading proce
predict a propagating thickened ridge at the surfactant fr
and significant thinning near the source region. The ex
shape of the thickness and concentration profiles depend
course, on the characteristic dimensionless numbers des
ing the relative influence of the various forces affecting t
spreading.

The first effort at understanding the development of
liquid digitation derived impetus from the similarity betwee
the surfactant patterns and viscous fingering. Within an
proximation that only allowed disturbances in the surfact
concentration~and not the film thickness!, it was shown that
the disturbance equation governing the flow near the bas

FIG. 1. Surface patterns produced during the spreading of a surfactant
on a thin water film.~a! 2 ml drop of 1 mM aqueous AOT surfactant sprea
ing on a film approximately 1mm in thickness~Ref. 7!. Diameter of the
fingering pattern is approximately 0.9 cm and corresponds to a time 0.2
after deposition.~b! Drop of C12E10 surfactant in ethylene glycol spreadin
on a film approximately 1022m in thickness~Ref. 6!. The advancing liquid
ridge normally located ahead of the fingering patterns is not visible in th
photographs.
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp



l
g
e

n
av
nd
s

he
th
th

na

an

o
ly
re
s

in
w
n

at
d
k
ar
io
al
ll
is
ce
at
on
ap
e

eg

e
am

dy
u
ap
o
th
th

ba
th

o
riv
f
b

d

th

ter-
totic
ctant
on

ow
ons
ant
nt

on
the
has
ch
er-
ear
the
zed
ns

ned

i-

y
face
,

ons
or
d

un-
ar-

vis-

in
to

143Chaos, Vol. 9, No. 1, 1999 O. K. Matar and S. M. Troian

D

a surfactant droplet was dominated by a term proportiona
the Laplacian of the concentration field. Drawing analo
with the linear stability analysis of viscous fingering, th
surfactant boundary at the base of the droplet was show
be linearly unstable to transverse disturbances of small w
number,K, with capillary corrections setting an upper bou
on K.11 This simplified model identified Marangoni stresse
arising from the distribution of insoluble surfactant at t
interface, as the source of instability. The role played by
Laplacian of the surfactant concentration was likened to
destabilizing role played by the Laplacian of the exter
pressure in viscous fingering.

Since the surfactant patterns are known to occur in m
different geometries, Matar and Troian18,19 later considered a
simple geometry consisting of a finite, rectilinear strip
insoluble surfactant spreading on a thin liquid film. Initial
all other forces aside from Marangoni stresses were igno
In this limit, the base flow solutions for the film thicknes
and surfactant concentration assume a self-similar form
stretched coordinate system whose range is coincident
the leading edge of the monolayer. Since the rate of cha
of the base state scales ast24/3, it was therefore assumed th
at sufficiently long times, the base states could be regar
as quasi-steady. Within this approximation, the film thic
ness and surfactant concentration were found to be line
stable to disturbances of all wavenumbers. This predict
which is only valid ast→`, seemed to belie experiment
observations showing spanwise structuration of an initia
flat and uniform liquid layer. The linear stability analys
was later modified to include capillarity and surfa
diffusion,20 two forces that produce more realistic base st
profiles for the film thickness and surfactant concentrati
These profiles were advanced in time until they too
proached self-similar form. Once again, however, the larg
eigenvalue describing the disturbance growth rate, was n
tive in most cases. There did appear a very small~of order
1023 or less! and positive eigenvalue for theK50 mode
only, but for very long spreading times or for relevant valu
of the capillary and Peclet numbers, this eigenvalue bec
negative.20

These earlier computations focused primarily on the
namics of the spreading process at very late times. An
derstanding of the early time dynamics, however, is perh
even more critical since the magnitude of the surfactant c
centration gradient, and hence the driving force for
spreading event, is largest at early times. Unfortunately,
large initial stress the system experiences produces
states which develop a spatially complex shape during
initial period. Because the linearized operators,L, governing
the evolution of disturbances contain terms which depend
the spatially inhomogeneous base states and their de
tives, the product,LL †, is noncommutative. The behavior o
this system at early times cannot therefore be predicted
classical eigenanalysis since the operators governing the
turbances are non-normal.19–22

As explained previously by several authors23,24 and
known since the early part of this century,25 the eigenvalues
corresponding to non-normal operators strictly describe
asymptotic behavior of a system ast→`. Infinitesimal dis-
ownloaded 23 Oct 2008 to 131.215.237.157. Redistribution subject to AIP l
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turbances may undergo considerable growth at early or in
mediate times even in systems achieving eventual asymp
decay. Indeed, as we describe below, a spreading surfa
coated film can undergo large disturbance amplification
the order of a few Marangoni shear times. We review bel
the transient behavior of the linearized system of equati
governing the dynamics of the film thickness and surfact
concentration and discuss the effect of varying differe
physical parameters of the flow. In particular, the inclusi
of van der Waals forces accelerates the thinning in both
streamwise and transverse flow directions. Once the film
sufficiently thinned, the amplification of disturbances, whi
was previously found to decay in time, rises sharply at int
mediate times. We have also integrated the fully nonlin
equations to explore the possibility of mode coupling and
development of disturbances not captured by the lineari
description. For the parameter values and initial conditio
used, these results simply reconfirm the picture obtai
within the linearized model.

II. GOVERNING EQUATIONS

We consider an incompressible, Newtonian film of un
form thicknessH* (x* ,z* ,t* 50)5H0* , viscosity m* , and
densityr* supported by a flat, rigid substrate aty* 50, as
shown in Fig. 2. The liquid surface is initially only partiall
covered by an insoluble surfactant monolayer whose sur
concentration,G* (x* ,z* ,t* ), achieves its maximum value
Gm* , at the originx* 50 vanishing smoothly atx* 5L0* . The
smallest value in surface tension corresponding toGm* is de-
noted bysm* while the largest value,s0* , denotes the surface
tension of the uncontaminated liquid surface. The equati
of motion are derived in the lubrication approximation f
which «5H0* /L0* !1. The monolayer and underlying flui
spread spontaneously toward the uncontaminated region
der the action of an initial gradient in surface tension ch
acterized by P* /L0* 5(s0* 2sm* )/L0* , where P* is the
spreading pressure. This flow is counter-balanced by the
cous stress at the surface which is of orderm* U* /H0* . The
spreading velocity characteristic of Marangoni driven flow
thin films is determined from this tangential stress balance
be U* 5«P* /m* .

FIG. 2. Schematic diagram of the monolayer deposition process.
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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The equations are reduced to dimensionless form by
troducing characteristic scales relevant to the dynamics
thin liquid film driven to spread by Marangoni stresses. T
horizontal coordinates,x* and z* , are scaled by the lengt
of the initial surfactant strip,L0* ; the vertical coordinate,y* ,
is scaled by the initial film thickness,H0* . Within the lubri-
cation approximation, the axial and transverse velocities,u*
andw* , are scaled byU* while the vertical velocity,v* , is
scaled by«U* . The characteristic time scale is given b
L0* /U* and the characteristic pressure acting throughout
film is given bym* U* L0* /H0*

25P* /H0* . The local surface
concentration and surface tension are normalized by t
values at the origin, namelyGm* andsm* . Likewise, the local
driving force for spreading is normalized byP* .

The inertial terms in the Navier Stokes equation can
ignored provided«2Re!1. In this system, both« and the
Reynolds number, Re[(r* U* H0* )/m* 5(r* P* «2L0* )/
m* 2, are vanishingly small. For sufficiently thin films, th
Bond number, Bo[r* g* H0*

2/P* , is negligible. There are
three relevant dimensionless numbers appearing in the e
tions of motion which reflect the importance of surface c
vature, surface diffusion~represented by the diffusion coe
ficient Ds* ), and van der Waals forces. These numbers
defined by an inverse modified capillary number,C
[«2sm* /P* ~related to the usual capillary number, C
[m* U* /sm* , by C5«3/Ca), a surface Peclet number, Ps

[U* L0* /Ds* 5P* H0* /m*Ds* , and a modified Hamake
constant,A[Ã/6pP* H0*

2. The two coupled equations de
scribing the spatio-temporal evolution of the film thickne
and surfactant concentration are defined by Eqs.~1! and ~2!
below. Complete details of the derivation leading to the
differential equations can be found elsewhere.13,14,18–20,22

Ht1
1

2
“•~H2

“s!1
C
3
“•~H3¹3H !

1A“•S 1

H
“H D50, ~1!

G t1“•~HG¹s!1
C
2
“•~GH2¹3H !

1
3

2
A“•S G

H2
“H D 5

1

Pes
¹2G. ~2!

Although C scales with«2, the capillary terms are retaine
since the surface curvature achieves values of o
O(«22).26 Equations~1! and ~2! are coupled by the surfac
tant equation of state which relates the surface tension to
local surfactant concentration. Since the monolayer rap
expands to cover the entire liquid surface, we choose
simplest relation appropriate for molecules in a ‘‘gaseo
state,’’ namelys512G.

III. MATHEMATICAL DESCRIPTION OF SPREADING
DYNAMICS

The response of the system to small disturbances is
tained by linearizing Eqs.~1! and ~2! according to

H~x,z,t !5H0~x,t !1H̃~x,z,t !, ~3!
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G~x,z,t !5G0~x,t !1G̃~x,z,t !, ~4!

in which H̃ andG̃ represent infinitesimal disturbances in th
film thickness and surfactant concentration, respectively.

A. Linearized formulation

1. Base states

In the absence of disturbances (H̃5G̃50), the spread-
ing is simply a function ofx andt and Eqs.~1! and~2! reduce
to the form

H0t
5

1

2
~H0

2G0x
!x2
C
3

~H0
3H0xxx

!x2AS 1

H0
H0xD

x

, ~5!

G0t
5~G0H0G0x

!x1
1

Pes
G0xx

2
C
2

~G0H0
2H0xxx

!x

2
3

2
AS G0

H0
2

H0xD
x

. ~6!

The subscript ‘‘0’’ will henceforth refer to the base flow
solutions~undisturbed states!. Other subscripts will refer to
partial differentiation in space or time. The coupled equ
tions~5! and~6! are solved subject to the following bounda
conditions at the origin,x50, and far downstream,x→`:

H0x~0,t !50, H0xxx~0,t !50, and G0x~0,t !50, ~7!

H0~`,t !51, H0x~`,t !50, and G0~`,t !50. ~8!

The constraints at the origin reflect symmetry and no-fl
aboutx50 while the far field constraints reflect undisturbe
conditions far from the advancing surfactant front. The ba
state initial conditions, chosen to mimic a flat, uniform liqu
film partially covered by a surfactant monolayer of consta
concentration,AL , are given by

H0~x,t0!51, G0~x,t0!50.5AL@12tanh~BL~x2x0!!#.

~9!
The surfactant concentration resembles a top hat distribu
which vanishes smoothly nearx5x0 . Although this choice
of initial and boundary conditions~the far field constraints in
particular! represent the desired experimental conditio
they preclude the possibility of steady-state base flow so
tions.

2. Disturbance equations

We seek disturbances of the form (H̃,G̃)(x,z,t)
5(C,F)(x,t)eiKz, describing a function which propagate
and evolves in time in the streamwise direction while exh
iting sinusoidal character in the transverse direction. The
turbancesC andF are determined from the following set o
equations representing a disturbance of transverse waven
ber K:
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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C t5L1@C,F#5
1

2
~H0

2Fx12H0G0xC!x2
K2

2
H0

2F2
C
3

@~H0
3Cxxx13H0

2H0xxx
C!x2K2~~H0

3!xCx12H0
3Cxx!1K4H0

3C#

2A@~2~H0x
!22H0H0xx

2K2H0
2!C22H0H0x

Cx1H0
2Cxx#/H0

3, ~10!

F t5L2@C,F#5~G0G0xC1H0G0xF1G0H0Fx!x2K2G0H0F1
1

Pes
~Fxx2K2F!

2
C
2

~G0H0
2Cxxx12G0H0H0xxx

C1H0
2H0xxx

F!x2
C
2

~2K2~~G0H0
2!xCx12G0H0

2Cxx!1K4G0H0
2C!

2
3

2
A@~6G0~H0x

!222H0H0x
G0x

22H0G0H0xx
2K2G0H0

2!C#/H0
4

2
3

2
A@~24H0G0H0x

1H0
2G0x

!Cx1GH0
2Cxx#/H0

42
3

2
A@~22H0H0x

2 1H0
2H0xx

!F1H0
2H0x

Fx#/H0
4. ~11!
s
a
n

nc

ce

e

o
a

e

th
at
n-
id
r,
a
,
s

b
w

y
ly

ed
u

nt
ni-

tur-

the

o at

ent

l-
-
i-
ue

to

by
ere
gh

n
g on
The linearized operators,L1 and L2 , are nonautonomou
since they depend on the temporal behavior of the b
states. For reasons similar to the choice of base state co
tions, the boundary conditions applied to the disturba
functions satisfy

Cx~0,t !50, Cxxx~0,t !50, and Fx~0,t !50, ~12!

C~`,t !50, Cx~`,t !50, and F~`,t !50. ~13!

The initial conditions forC andF are given by

C~x,t0!5F~x,t0!5e2CL~x2xs!2
. ~14!

The disturbances in the film thickness and surfactant con
tration represent Gaussian distributions centered atx5xs . In
this paper, we limit our studies to disturbances applied ah
of the initial monolayer such thatxs.x0 . Since the distur-
bance equations are linear, the amplitudes ofC and F can
be set to unity with no loss in generality. Other choices
initial conditions have produced the same qualitative beh
ior described below.20–22

3. Quantifiers of transient amplification

As described in the Introduction, the inherent time d
pendence of the base state governed by Eqs.~5! and ~6!
precludes a straightforward modal analysis. In addition,
prediction of asymptotic stability for the quasi-steady-st
solutions18–20 does not rule out the possibility of large tra
sient growth at early or intermediate time scales. In cons
ering the ‘‘stability’’ of a time variant base state, howeve
one must consider the evolution of a disturbance by comp
son with the evolution of the base state itself. For example
a disturbance decreases in time but the base state decrea
a faster rate, then the disturbance will appear amplified
later times. Conversely, if a disturbance increases in time
the base state increases faster still, then the disturbance
appear to decay in time.27 Since the tendency toward stabilit
or instability at any instant in time is all that can be reliab
stated in the case of unsteady base states, Shen27 proposed
the concept of ‘‘momentary stability’’ and an associat
growth rate criterion in order to quantify the instantaneo
stability of time variant base flows.
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We introduce the following quantifiers of transie
growth or amplification. One useful measure of the mecha
cal energy contained in the base flow or an applied dis
bance is

Eq[
1

2E0

`

q2~x,t !dx, whereq5C,F,H0 ,G0 . ~15!

The ratio of the disturbance energy to that contained in
evolving base state is described by

Mi~ t ![
Ei~ t !

Ej~ t !
, where~ i , j !5~C,H0! or ~F,G0!. ~16!

The disturbance amplification, defined as the energy rati
time t compared to its initial value att0 , is given by

Gi~ t ![
Mi~ t !

Mi~ t0!
, where~ i , j !5~C,H0! or ~F,G0!.

~17!

Along with these definitions, the associated time-depend
‘‘growth rate’’ is represented by

V i[
1

Gi

dGi

dt
, where i 5C or F. ~18!

Equation~18! is used as a criterion of ‘‘momentary stabi
ity’’ in the sense of Shen;27 V i.0 describes momentary in
stability whileV i,0 describes momentary stability. The cr
terion for asymptotic stability, determined from eigenval
analysis of the non-normal operators, would correspond
limt→` V i<0.21,22,27

4. Solution procedure

Equations~5!, ~6!, ~10!, and ~11! are solved simulta-
neously by the method of lines28 for given values ofC, Pes ,
A, and K. The spatial derivatives were approximated
second-order central finite differences. The equations w
updated in time using Gear’s method implemented throu
the ODE solverLSODE.29 The number of grid points used i
the computations varied between 201 and 501 dependin
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 3. ~a! Base state solution,
H0(x,t), with evolved disturbances
C(x,t) and F(x,t), for K55, Pes
5500, C51025, andA50. The time
Dt51, 2, 4, 8, and 12 refers to time
after surfactant deposition.~b! and ~c!
3-D re-constructions of the total film
thickness@with an applied disturbance
of K55 for Dt52 ~b! and Dt512
~c!#. Additional parameter values are
t051, AL50.1, BL530, CL512, x0

50.4, xs50.7, andN5301.
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the degree of resolution required to produce the full struct
of the base states. Solution convergence was easily obta
by refining the spatial grid.

B. Nonlinear formulation

The fully nonlinear Eqs.~1! and~2! were also integrated
directly to yield the spatio-temporal evolution of specifi
states in the film thickness and surfactant concentration
scribed by

H~x,z,t0!5H0~x,t0!1dH~x,z,t0!,
~19!

G~x,z,t0!5G0~x,t0!1dG~x,z,t0!.

The functionsH0(x,t0) and G0(x,t0) define the film thick-
ness and concentration profiles at some specified timt
5t0 . For t051 ~the origin of time!, these functions are sim
ply given by Eq.~9!. For later timest0.1, H0(x,t0) and
G0(x,t0) represent the numerical solutions to Eqs.~5! and~6!
evolved throught0 . The disturbances,dH and dG, were
chosen to have a generic form

dH~x,z,t0!5dĤe2CN~x2xs!2
R~z!,

~20!
dG~x,z,t0!5dĜe2CN~x2xs!2

R~z!,

where the subscript ‘‘N’’ refers to the parameter value use
in the nonlinear computations. The functionR(z) represents
a summation of sinusoidal functions according toR(z)
5( j 51

j 5m cos(2pKj(z/W)), whereK j is the wavenumber of an
applied disturbance andW is the width of the computationa
domain. The choice of cosines assures that the funct
given by Eq.~19! satisfy no flux conditions atz50 andz
5W. The summation of sinusoidal waves is useful for pro
ownloaded 23 Oct 2008 to 131.215.237.157. Redistribution subject to AIP l
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ing the degree of mode coupling this dynamical syst
might allow. To make a direct comparison with the results
the linearized theory, the amplitudes of the increments,dĤ

anddĜ, are given by

dĤ5«@max
x

H0~x,t0!#, ~21!

dĜ5«@max
x

G0~x,t0!#. ~22!

The magnitude of« ~not to be confused with the lubricatio
parameter described in Sec. II! in the computations range
from 0.01 to 0.03. Disturbances of larger initial amplitud
«, gave rise to numerical instabilities and were not pursu
further. The same physical boundary conditions describe
Sec. III A were used to solve Eqs.~1! and ~2!. In addition,
periodicity in the transverse direction was enforced
H(x,0,t)5H(x,W,t) andG(x,0,t)5G(x,W,t).

We investigated various combinations of the parame
list given byAL , BL , CL , CN , x0 , xs , K, andt0 for experi-
mentally relevant values of the dimensionless numbersC,
Pes , andA. The method of lines was used to integrate t
equations of motion and the resultant ODE’s were solv
usingLSODE. The Gear integrator option, which is a variabl
step, variable-order, implicit method known to handle s
ODE’s reliably, was originally implemented. This choic
lead to computations of orderO(Nx

2Nz
2), whereNx and Nz

represent the number of grid points in thex andz directions.
When the number of grid points necessary to resolve part
larly steep fronts at the advancing monolayer~particularly
for large Pes and smallC) were as large asNx5121 and
Nz5241, we switched to the Adams option, an expli
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 4. Amplification ratios,GC andGF , corresponding to the linearized transient growth for Pes5500,C51025, andA50. ~a! and~b! The behavior ofGC

andGF for various wavenumber disturbances.~c! The dependence ofGC on the parameterBL , which controls the initial shear stress.~d! The dependence
of GC on the parameterxs , which defines the central location of the applied disturbance. The remaining parameter values are given in Fig. 3.
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scheme appropriate for stiff equations provided the step s
are very small. With this choice, the computations reduce
order O(NxNz). The large number of grid points place a
effective restriction on the magnitude of Pes andC, which in
these studies spanned the range Pes<5000 andC<1025.
The grid sizes used in the computations ranged from 0.0
0.02; solution convergence was monitored by grid size
finement. The computational runs required anywhere fro
few minutes to a few hours on an SGI INDY~R4400SC!,
depending on the parameter values used. As a perform
check of this algorithm, we explicitly verified that for th
same parameter choices, both the 2-D direct integration
Eqs. ~1! and ~2! obtained with the explicit Adams metho
and the 1-D solution to Eqs.~5! and ~6! using the implicit
Gear’s method produced the same results.20

IV. RESULTS AND DISCUSSION

A. Linearized transient response

We first consider the general character of the solution
the linearized disturbance equations. Shown in Fig. 3~a! are
several snapshots of the base state,H0 , and the disturbance
functions,C and F, corresponding to timesDt51, 2, 4, 8
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and 12 after spreading commences for parameter valuC
51025, Pes5500, andA50. As time evolves, the solution
broaden and decay since the driving force for spread
which is proportional to the gradient in concentration, co
tinually diminishes. Figures 3~b! and 3~c! represent 3-D vi-
sualizations of the sumH0(x,t)10.01C(x,t)cos(Kz) at Dt
52 and 12~integration commenced att051) for K55. The
disturbance in film thickness, first situated ahead of the s
factant monolayer, is intensified by the passage of the
vancing wavefront but eventually decays and localizes
hind the steep and rapidly moving front. As observed
experiment, the film corrugations develop a transverse d
tation which localizes behind the advancing ridge. Figu
4~a! and 4~b! document the transient growth and decay e
perienced by the spreading film and surfactant concentra
for the same parameter values but various wavenumber
turbances. Large transient growth inGC(t) is evident on the
order of a few shear times. The large wavenumber dis
bances dominate the response inGC(t) at early times both in
amplitude and growth rate~not shown!20,22 but eventually
fade away. The smaller wavelength disturbances grow m
slowly and achieve smaller amplitudes although they per
for longer times. In contrast to these observations, Fig. 4~b!
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 5. Linearized response and transient growth of an applied disturbance withK510. ~a! The effect of increasing Pes on the base state,H0 ~at t53), and
on the corresponding amplification ratio,GC(t). The capillary constant is held fixed atC51025. ~b! The effect of decreasingC on the base state,H0 ~at t
53), and on the corresponding amplification ratio,GC(t). The surface Peclet number is held constant at Pes5500. The remaining parameter values are giv
in Fig. 3.
n-
g

ra
o
s

he
-
he
ize

p
rr

n
ll

a

d
e
u

ally

ent
a-
of
be-
e

is
b-
ding

ht at
arate
g,

de
f the
p-
tant

er
of

ell
et-
indicates thatGF does not experience any significant e
hancement. This behavior can be understood by appealin
the nature of the surface shear stress caused by concent
gradients. Even a very small redistribution of surfactant
the surface can have a large effect on the film thickne
which is sheared and thinned by even the smallest s
stress. Figures 4~c! and 4~d! demonstrate the effect of vary
ing BL , which controls the sharpness of the drop-off in t
initial surfactant distribution function and therefore the s
of the initial shear stress, andxs , the peak location of the
disturbance functions. The larger the initial shear stress
the longer the base flow is allowed to develop and stee
before encountering the disturbances, the larger the co
sponding transient response.

Figures 5~a! and 5~b! depict a similar trend inGC(t) as
the parametersC and Pes are varied. The examples show
correspond toK510, the mode exhibiting the largest overa
amplitude in Fig. 4~a!. The solutions clearly show that
decrease inC or an increase in Pes , both of which produce a
steeper advancing front, enhance the transient growth of
turbances. Other parameter choices which produce ste
fronts and correspondingly larger values of the surface c
vature~and higher derivatives! behave similarly.20–22 In ev-
ery case examined, providedA50, the transient growth
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eventually fades away and the system is asymptotic
stable.

The physical mechanism leading to the large transi
growth is linked to the extraction of energy from the sp
tially inhomogeneous waveform, as well as the evolution
a region of constant gradient in surfactant concentration
hind the advancing front.20–22The reader is referred to thes
references for an in depth discussion. This mechanism
quite different, however, from the fingering behavior o
served at the leading edge of other free surface sprea
problems, like the flow down an inclined plane30,31 or the
thermocapillary driven spreading of a thin liquid film.32,33 In
these other spreading processes, the instability occurs rig
the leading edge and causes the spreading front to sep
into long narrow rivulets which never undergo spreadin
shielding, or tip-splitting. Furthermore, when the amplitu
of the advancing ridge approaches values on the order o
thickness of the pre-existing liquid film, the fingering disa
pears altogether, in sharp contrast to a spreading surfac
film.

We have recently investigated the effect of van d
Waals forces on the spreading profile for positive values
the Hamaker constant which promote film thinning. It is w
known that the inclusion of such a force can lead to dew
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 6. The linearized response to disturbances in the presence of van der Waals thinning.~a! H0 ~at t54) andGC for Pes5500, C51025, t051, AL51,
BL520, CL5200, x050.1, xs50.2 andN5301. 3-D re-constructions of the total film thickness~for applied disturbance withK510): ~b! A50 and~c!
A51023. The remaining parameter values are given in~a!.
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ting and film rupture.34–36 We have found that the inclusio
of this force in our calculations dramatically changes
behavior ofGC at intermediate times. As shown in Fig. 6 fo
parameter valuesA51023, Pes5500, andC51025, once
the film near the source undergoes sufficient thinning,
der Waals forces contribute to the amplification of dist
bances,GC(t), to produce a second even larger increa
~The parameter values forAL , BL , CL , x0 , andxs are dif-
ferent than those used in Fig. 5 and were chosen simpl
initiate more rapid film thinning near the source region.! This
behavior suggests that other forces which promote film th
ning will give rise to similar amplification inGC(t). Unfor-
tunately, the computations with nonzeroA had to be stopped
when the spatial gradients could no longer be resolved a
rately. Different numerical techniques will be required
handle the onset of film rupture. Figures 6~b! and 6~c! depict
the sumH0(x,t)10.01C(x,t)cos(Kz) for a disturbance of
K510 atDt53 after deposition, i.e.,t54. Preliminary stud-
ies indicate that the streamwise and transverse compon
of the van der Waals term are destabilizing while capilla
forces as well as streamwise Marangoni flow exert a st
lizing influence.20 The stabilizing effect of Marangon
stresses stems from their tendency to refill the surfactant
pelled from the thinning region by van der Waals forces
agreement with previous studies.36 The addition of this type
ownloaded 23 Oct 2008 to 131.215.237.157. Redistribution subject to AIP l
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of disjoining pressure, then, gives rise to a spanwise fi
corrugation which localizes behind the advancing fro
which persists to later times, and which resembles the
terns observed experimentally. More studies of this sort
required in order to determine whether the experimental p
terns are evidence of a ‘‘momentary instability’’ which pro
duces transient film corrugation driven by a coupling b
tween Marangoni stresses and van der Waals forces.
coupling may eventually explain why the fingering patter
have never been observed in films thicker than a few m
meters, since the magnitude of the flux due to the van
Waals force is insignificant in thicker films. It may also e
plain why the fingering patterns become more ramified as
thickness of the underlying liquid film decreases.

B. Nonlinear transient response

For the parameter space investigated we have found
integration of the nonlinear equations produces film thic
ness and surfactant concentration profiles which appea
most identical to those obtained from the linearized the
shown in Fig. 3. In addition, the amplification ratios,GC and
GF , from the nonlinear computations shown in Fig. 7 can
directly compared to the ratios previously shown in Fig
4~a! and 4~b!. The overall shape and decay of the differe
icense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 7. Amplification ratios,GC and GF , corresponding to the nonlinear transient growth, as a function of various wavenumber disturbances. R
parameter values: Pes5500, C51025, A50, «50.01, t051, AL50.1, BL530, CN512, x050.4, xs50.7, Nx5101, andNz5201.
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wavenumber disturbances resemble each other very clo
The only observable differences are reflected in the m
mum amplitude achieved. For example, theK520 mode in
the linear approximation achieves its maximum value of
in just undert52, while in the nonlinear computations
reaches a value closer to 88 just aftert52. Surprisingly,
even though the disturbances grow to be quite large
could potentially cause the nonlinear terms in the equati
to contribute significantly, no such effect was observed.
addition, the nonlinear terms do not produce disturban
with wavenumbers different than the initial wavenumb
We have found that an applied disturbance with a giv
ownloaded 23 Oct 2008 to 131.215.237.157. Redistribution subject to AIP l
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wavenumber will maintain that wavenumber throughout
spreading process, never evolving into a disturbance
contains subharmonics of the original frequency. This sin
frequency response was also observed by Tryggvason
Aref37 and Tan and Homsy38 in their simulations of immis-
cible and miscible viscous fingering. Tan and Homsy su
gested that this feature was caused by the transverse
straint of periodic boundary conditions which might pin th
system to the original imposed wavelength and disallow
formation of subharmonics. The simulations of Tryggvas
and Aref and Tan and Homsy did produce mode coupl
when the original applied disturbance contained several
d
FIG. 8. Contour plots of the disturbance film thickness for a perturbation consisting of three wavenumbers,K55, 10, and 20, applied with equal weight an
propagated through the nonlinear equations.~a! Dt52, ~b! Dt54, ~c! Dt58, and~d! Dt512. The relevant parameter values are Pes5500, C51025, A
50, Nx5121, Nz5241. The remaining parameter values are given in Fig. 7.
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quencies, especially pairs or triplets of frequencies that co
produce resonance. To investigate this possibility, we te
the response of our system of nonlinear equations to a
turbance consisting of three cosine modes@i.e., m53 in
R(z)] in Eq. ~20! of equal but small amplitude consisting o
the fundamental wavenumberK510, its harmonicK520,
and its sub-harmonicK55 for parameter values Pes5500,
C51025, andA50. Contour plots of the disturbance film
thickness, obtained by subtraction of numerical solutions
Eqs. ~1! and ~2! with dH.0 and dG.0 from those with
dH50 anddG50 ~i.e., base state solutions!, are shown in
Fig. 8. White patches represent regions of highest eleva
while black patches represent regions of lowest depress
While the disturbance film thickness initially reflects th
presence of the three imposed wavenumbers, the sy
eventually sustains only the smallest imposed wavenum
namelyK55. This tendency during spreading to move t
ward patterns with a smaller wavenumber was also obse
in the linearized equations whose result is shown in Fig
The smaller wavenumber corresponds to large wavelen
disturbances and the trend toward wider ‘‘fingers’’ can
interpreted as a coalescence process. In the context o
stable viscous fingering, this trend has been called a mo
latory instability and has been observed in both immiscibl37

and miscible38 fingering.
Besides studying the behavior of the nonlinear equati

to disturbances imposed at the very beginning of the spre
ing process, we also conducted studies in which the fi
thickness and surfactant concentration were allowed
evolve for some time before a disturbance was applied
Fig. 9 is shown the evolution of the film thickness and
associated disturbance ofK55, which was placed on the
film after it had evolved for a timet053. The profiles rep-
resent cross-sectional views obtained for timesDt50, 6, 10,
16, and 22 after the disturbance was applied and for par
eter values Pes55000, C51025, A50, and«50.02. The

FIG. 9. A cross-sectional view ofH0 and dH ~for K55) propagated
through the nonlinear equations for a base state allowed first to ev
undisturbed throught053. dH has been magnified by a factor of 10. Re
evant parameter values: Pes55000, C51025, A50, and«50.02. The re-
maining parameter values are given in Fig. 7.
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magnitude of the disturbance film thickness has been ex
gerated by a factor of ten to aid visualization. The black d
marking the peaks inH0 anddH are a guide to the eye fo
comparing the propagation speeds between the two w
forms. The initial disturbance in the film thickness is ce
tered about the ramp-like portion but extends throughout
entire profile, affecting the region near the source all the w
to the leading edge. As the wavefront inH0 propagates for-
ward, its shape broadens but the maximum value rem
fairly constant for the period shown. The disturbance,dH,
migrates toward the wavefront at early times but eventua
cannot keep pace with the leading edge. AfterDt56, the
peak in the disturbance has fallen behind the moving fr
continually slowing with respect to the leading edge inH0 .
As seen previously in Fig. 3 for the linearized system and
different initial conditions, the disturbance localizes on
again behind the moving front. Similarly, the inclusion
van der Waals forces in the nonlinear equations causes
disturbances to localize even further back toward the sha
thinned region near the source. The profiles in Fig. 10
similar to those in Fig. 6 and reinforce the observation t

ve

FIG. 10. 3-D images of the film thickness including an applied disturba
of K510 propagated through the nonlinear equations in the presence o
der Waals forces. Relevant parameter values: Pes5500, C51025, t54, t0

51, AL51, BL520, CN5200, x050.1, xs50.2, Nx571, andNz5141. ~a!
A50 and~b! A51023.
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the nonlinear terms do not contribute any new feature to
flow.

V. CONCLUSION

A previous study has shown that the linearized equati
of motion governing the spontaneous spreading of a sur
tant monolayer strip on a thin liquid film predict asympto
stability.18,19 Recent work has suggested, however, that
transient response of this hydrodynamic system can
significant.21 We have shown that infinitesimal disturbanc
to the film thickness become amplified by several orders
magnitude, depending on the size of the initial shear str
the spreading speed, and other physical parameters con
ling the thickness of the advancing ridge and its degree
curvature~and higher order derivatives!. In addition, the in-
clusion of a simplified van der Waals term in the lineariz
system of equations encourages strong thinning in the
ready thinnest parts of the spreading film intensifying
transient growth at intermediate times. The relative energ
the disturbances produced in the absence of van der W
forces is always observed to undergo large transient gro
and eventual decay. When the computations are perfor
with the van der Waals term, the disturbances also grow
decay but at intermediate times suddenly experience a
ond boost in energy. This secondary amplification reflec
type of resonant behavior between the thinning caused by
spreading film~due to Marangoni stresses! and the van der
Waals driven thinning which enhances transverse corru
tions established previously by the rapid Marangoni flo
Unfortunately, the transient computations were termina
once the spatial gradients and higher derivatives of the
interface shape could no longer be resolved accurately.
are investigating the use of other numerical techniques be
able to handle this problem.

We have also investigated the stability of the nonline
system of equations in the film thickness and surfactant c
centration by direct numerical simulations. For the parame
set used, we could discern no major influence from the n
linear terms ignored in the linearized description. The und
turbed and disturbed profiles look remarkably similar,
does the system’s transient behavior as a whole. We have
excluded the possibility that larger amplitude disturban
than those applied here could affect the system in ways
evident in the linearized equations. The nonlinear equati
were subjected to disturbances of either one wavelengt
multiple wavelengths in order to probe the existence of m
coupling or splitting. Application of a single wavelength di
turbance never produced other harmonics during the spr
ing process. The application of multiple wavelengths p
duced surface profiles that in time tended to select out
largest wavelength originally present. This feature could a
be inferred from the linearized description at intermedi
and late times which predicted that the mode with the larg
amplification ratio always tended toward the mode with
largest wavelength. This tendency may be describing a c
lescence process in which digitated patterns of various wa
lengths coalesce to produce wider ‘‘fingers.’’ Finally, th
inclusion of van der Waals thinning into the nonlinear equ
ownloaded 23 Oct 2008 to 131.215.237.157. Redistribution subject to AIP l
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tions of motion produced digitated surface structures wh
resemble closely the patterns obtained with the lineari
equations. It appears that the effect induced by including
term in the linearized set of equations is much more dram
than any effects produced by considering the fully nonlin
set of equations.

Our parameter range for the nonlinear studies indic
that the nonlinear description offers little physical insight n
already present in the linearized description. The most p
erful effect on the surfactant coated film appears to lie w
the coupling between the already thinned film produced
the rapid Marangoni spreading and the even stronger t
ning later induced by the van der Waals forces. It is as if
film has been primed by the first process to produce con
tions which intensify disturbances that would normally d
cay. In addition, the rapid thinning strongly localizes distu
bances in the thinnest parts of the film. A review of t
experimental literature reveals that the digitated patte
most easily appear on very thin films. For example,
branched patterns shown in Fig. 1 occur in films who
thickness makes them susceptible to van der Waals forc

We hope our studies will focus attention on the sign
cance of van der Waals forces on the spreading process
encourage experimentation which can ascertain the vali
of this claim. In addition, we have initiated numerical wo
to study the effect of white noise on the spreading dynam
and to investigate parameter values which can lead
branching and tip-splitting, processes more closely relate
nonlinear phenomena in hydrodynamic systems.
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