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Spreading of a surfactant monolayer on a thin liquid film: Onset
and evolution of digitated structures
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We describe the response of an insoluble surfactant monolayer spreading on the surface of a thin
liquid film to small disturbances in the film thickness and surfactant concentration. The surface
shear stress, which derives from variations in surfactant concentration at the air—liquid interface,
rapidly drives liquid and surfactant from the source toward the distal region of higher surface
tension. A previous linear stability analysis of a quasi-steady state solution describing the spreading
of a finite strip of surfactant on a thin Newtonian film has predicted only stable m@gsamics

in Small Confining Systems IMaterials Research Society Symposium Proceedings, edited by J. M.
Drake, J. Klafter, and E. R. Kopelmé#iaterials Research Society, Boston, 19960l. 464, p. 237;

Phys. Fluids A9, 3645(1997); O. K. Matar Ph.D. thesis, Princeton University, Princeton, NJ, 1.998

A perturbation analysis of the transient behavior, however, has revealed the possibility of significant
amplification of disturbances in the film thickness within an order one shear time after the onset of
flow [Phys. Fluids A10, 1234(1998; “Transient response of a surfactant monolayer spreading on

a thin liquid film: Mechanism for amplification of disturbances,” submitted to Phys. Fluidgshis

paper we describe the linearized transient behavior and interpret which physical parameters most
strongly affect the disturbance amplification ratio. We show how the disturbances localize behind
the moving front and how the inclusion of van der Waals forces further enhances their growth and
lifetime. We also present numerical solutions to the fully nonlinear 2D governing equations. As time
evolves, the nonlinear system sustains disturbances of longer and longer wavelength, consistent with
the quasi-steady state and transient linearized descriptions. In addition, for the parameter set
investigated, disturbances consisting of several harmonics of a fundamental wavenumber do not
couple significantly. The system eventually singles out the smallest wavenumber disturbance in the
chosen set. The summary of results to date seems to suggest that the fingering process may be a
transient response which nonetheless has a dramatic influence on the spreading process since the

digitated structures redirect the flux of liquid and surfactant to produce nonuniform surface
coverage. ©1999 American Institute of Physids$1054-150(09)02001-7

Surfactant molecules play a vital role in many biological
and industrial processes because of their native ability to
lower surface tension in proportion to their concentra-
tion. Their presence greatly improves the wetting and
spreading capability of commonplace substances like
inks, paints, and herbicides. Lung surfactants produced
in the alveoli are critical in maintaining lung compliance.
A deficiency in lung surfactant production, for example,
is known to cause pulmonary edema and other respira-
tory difficulties. When surfactant molecules contact a lig-
uid surface of higher surface tension, a shear stress de-
velops at the airliquid interface in proportion to the
gradient in surfactant concentration. This stress forces
liquid and surfactant to flow toward regions of higher
surface tension and in the process strongly deforms the
underlying liquid film. Experiments by several groups
[Chem. Eng. Commun. 13 133 (1981); Phys. Rev. Lett.
62, 1496(1989; Langmuir 11, 87 (1999; Phys. Fluids A
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7, 2640 (1999; Faraday Discuss. 104307 (1996] have
shown that the spreading of surfactant molecules on
athin liquid film often produces unusual digitated struc-
tures near the region of initial contact. We briefly review
theoretical efforts using linear stability analysis to un-
cover the source of digitation. We then discuss results
from transient growth analyses and direct numerical
simulations. The focus of this work rests with the tran-
sient spreading behavior — how do small disturbances
influence the spreading process at early times? Both the
transient and nonlinear studies highlight the importance
of regions in the film thickness which thicken (at the
monolayer advancing front) or thin (at the surfactant
source in response to the evolving shear stress and
whose curvature and higher derivatives becomes sub-
stantial. Our studies reveal that the surfactant distribu-
tion which develops during the spreading event produces
a liquid layer which is highly susceptible to spanwise dis-
turbances. This corrugation is sustained for several shear
times but eventually decays away. Although the distur-
bance speed and mobility is decreased in the thinnest re-
gions of the film, the additional presence of van der
Waals forces which promote thinning, re-amplify decay-
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ing disturbances, increase their lifetime, and produce
digitated liquid structures.

I. INTRODUCTION

Surfactant molecules placed at an air—liquid interface
will spontaneously spread to cover regions of higher surface
tension thereby reducing the internal free energy of the liquid
system. The surfactant concentration profile and the defor-
mation in film thickness, as well as the speed and uniformity
of coverage, are critical factors which affect many coating
processes. Empirically, it is well known that surfactant addi-
tives can significantly improve wettability and spreading
rates. Perhaps less understood until recently is the spreading
behavior of a surfactant coated film. Least understood are the
unusual fingering patterns which sometimes occur in surfac-
tant films soon after spreading commences. In the absence of
disturbances the spreading process can be simply explained.
Regions of the air-liquid interface rich in surfactant experi-
ence a lower surface tension whose magnitude is propor-
tional to the local concentration. Gradients in the surface
concentration at the air—liquid interface give rise to gradients
in surface tension which produce a shear stress on the liquid
film. This stress forces liquid and surfactant to flow toward
regions of higher surface tension, a process described as Ma- b
rangoni driven flowt Experimentally and theoretically, it has (b) ‘
been shown that surfactants spreading on a thin liquid film
(whose lateral extent greatly exceeds its thickhest drive FIG. 1. Surface patterns produced during the spreading of a surfactant drop
fluid into a thickened and rapidly advancing ridge with sub-on a thin water film(a) 2 x4l drop of 1 mM aqueous AOT surfactant spread-

sequent thinning near the original line of contact between thég on a film approximately Jum in thickness(Ref. 7. Diameter of the
clean surface and surfactant. fingering pattern is approximately 0.9 cm and corresponds to a time 0.2 sec

. . o after deposition(b) Drop of C,E,, surfactant in ethylene glycol spreading
Various experimental studies’ have shown that once on a film approximately 1074 in thickness(Ref. 6. The advancing liquid

the spreading of surfactant commences, the film thicknesgdge normally located ahead of the fingering patterns is not visible in these
near the source region begins to thin and develops a digitateghotographs.
appearance as shown in Fig. 1. The curve describing the
perimeter of the pattern shown in Fig(al has been mea-
sured to have a fractal dimensi@y~1.7, a value which been developed to describe the spreading behavior of a sur-
remains constant in timeThe liquid streamers advance over factant film on a thin liquid layer. The surfactant can be
the surface by continually bifurcating at the tips. Althoughdelivered either as a hemispherical cap at constant
the physical mechanism controlling the spreading process isoncentratioh' or as a monolayéf~'’ emanating from a fi-
different than the one responsible for unstable miscible onite or infinite reservoir. This original model has been ex-
immiscible viscous fingering? the patterns in both cases tended to include not only Marangoni stresses and capillarity
appear similar in evolution and shape. For example, théut also gravity, surface diffusion, bulk diffusion, van der
finger-like protrusions shown in Fig. 1 also undergo lateralWaals forces, and the presence of endogelipresexisting
spreading, shielding, and tip-splitting, features characteristisurfactant on the initial liquid film. The base state solutions
of viscous fingering patterns. The surfactant patterns arésolutions in the absence of disturbarncgseverning the be-
known to occur quite easily and have been found undehavior of the film thickness during the spreading process
many different experimental conditions including spreadingpredict a propagating thickened ridge at the surfactant front
in rectilineaf® or axisymmetric geometry>® spreading and significant thinning near the source region. The exact
from a source held at constant concentrdtibor from a  shape of the thickness and concentration profiles depend, of
finite reservoi>® spreading on films ranging in thickness course, on the characteristic dimensionless numbers describ-
from microng™® to millimeters!® with solublé*° or ing the relative influence of the various forces affecting the
insolublé>1% surfactants of various head group charge, andspreading.
with a surfactant source either abéve® or below*'° the The first effort at understanding the development of the
critical micelle concentration. This latter concentration de-liquid digitation derived impetus from the similarity between
fines the point at which the air-liquid interface can no longerthe surfactant patterns and viscous fingering. Within an ap-
accommodate surfactant thereby forcing excess surface mgbroximation that only allowed disturbances in the surfactant
ecules into the bulk liquid to form micellar clusters. concentratior(and not the film thickne$sit was shown that
During the past several years a lubrication model hashe disturbance equation governing the flow near the base of
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a surfactant droplet was dominated by a term proportional to
the Laplacian of the concentration field. Drawing analogy
with the linear stability analysis of viscous fingering, the 7.
surfactant boundary at the base of the droplet was shown to .
be linearly unstable to transverse disturbances of small wave- r=0
number K, with capillary corrections setting an upper bound 6=0
on K.1! This simplified model identified Marangoni stresses,
arising from the distribution of insoluble surfactant at the
interface, as the source of instability. The role played by the
Laplacian of the surfactant concentration was likened to the
destabilizing role played by the Laplacian of the external .
pressure in viscous fingering. >

Since the surfactant patterns are known to occur in many /
different geometries, Matar and Trof&rt°later considered a
simple geometry consisting of a finite, rectilinear strip of FIG. 2. Schematic diagram of the monolayer deposition process.
insoluble surfactant spreading on a thin liquid film. Initially
all other forces aside from Marangoni stresses were ignored.
In this limit, the base flow solutions for the film thickness turbances may undergo considerable growth at early or inter-
and surfactant concentration assume a self-similar form in gediate times even in systems achieving eventual asymptotic
stretched coordinate system whose range is coincident witlecay. Indeed, as we describe below, a spreading surfactant
the leading edge of the monolayer. Since the rate of changéoated film can undergo large disturbance amplification on
of the base state scalestaé”®, it was therefore assumed that the order of a few Marangoni shear times. We review below
at sufficiently long times, the base states could be regardelffe transient behavior of the linearized system of equations
as quasi-steady. Within this approximation, the film thick-governing the dynamics of the film thickness and surfactant
ness and surfactant concentration were found to be linearigoncentration and discuss the effect of varying different
stable to disturbances of all wavenumbers. This predictionPhysical parameters of the flow. In particular, the inclusion
which is only valid ast—c, seemed to belie experimental of van der Waals forces accelerates the thinning in both the
observations showing spanwise structuration of an initiallyStreamwise and transverse flow directions. Once the film has
flat and uniform liquid layer. The linear stability analysis Sufficiently thinned, the amplification of disturbances, which
was later modified to include capillarity and surfaceWas previously found to decay in time, rises sharply at inter-
diffusion 2 two forces that produce more realistic base statd"ediate times. We have also integrated the fully nonlinear
profiles for the film thickness and surfactant concentration€duations to explore the possibility of mode coupling and the
These profiles were advanced in time until they too ap_develpp.ment of disturbances not captured by 'the Ilnegrlzed
proached self-similar form. Once again, however, the |arge§{iescr|ptlon. For the parameter vall_Jes and |n|t|al condltl_ons
eigenvalue describing the disturbance growth rate, was negiS€d: these results simply reconfirm the picture obtained
tive in most cases. There did appear a very srtadliorder  Within the linearized model.
10 2 or less and positive eigenvalue for th€=0 mode
only, but fqr very long spreading times or fqr relevant values;; GOVERNING EQUATIONS
of the capillary and Peclet numbers, this eigenvalue became
negative?° We consider an incompressible, Newtonian film of uni-

These earlier computations focused primarily on the dyform thicknessH* (x*,z*,t* =0)=Hg , viscosity u*, and
namics of the spreading process at very late times. An undensity p* supported by a flat, rigid substrate yt=0, as
derstanding of the early time dynamics, however, is perhapshown in Fig. 2. The liquid surface is initially only partially
even more critical since the magnitude of the surfactant coneovered by an insoluble surfactant monolayer whose surface
centration gradient, and hence the driving force for theconcentration]'* (x*,z*,t*), achieves its maximum value,
spreading event, is largest at early times. Unfortunately, th&'},, at the originx* =0 vanishing smoothly at* =L§ . The
large initial stress the system experiences produces basenallest value in surface tension corresponding fois de-
states which develop a spatially complex shape during thigoted byo, while the largest valuerg , denotes the surface
initial period. Because the linearized operat@sgoverning  tension of the uncontaminated liquid surface. The equations
the evolution of disturbances contain terms which depend onf motion are derived in the lubrication approximation for
the spatially inhomogeneous base states and their derivarhich e=Hj/L§<1. The monolayer and underlying fluid
tives, the productZ£ T, is noncommutative. The behavior of spread spontaneously toward the uncontaminated region un-
this system at early times cannot therefore be predicted bgler the action of an initial gradient in surface tension char-
classical eigenanalysis since the operators governing the diacterized byIT*/L§= (o4 —oh)/Ls, where IT* is the
turbances are non-normalr. % spreading pressure. This flow is counter-balanced by the vis-

As explained previously by several authdré and  cous stress at the surface which is of orggilU* /Hj . The
known since the early part of this centifthe eigenvalues spreading velocity characteristic of Marangoni driven flow in
corresponding to non-normal operators strictly describe théhin films is determined from this tangential stress balance to
asymptotic behavior of a system s . Infinitesimal dis- beU* =gII*/u*.

a, ™
I
2.7,
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Th.e equations are reduced to dimensionless form by in- F(x,z,t)=F0(x,t)+1~“(x,z,t), (4
troducing characteristic scales relevant to the dynamics of a B N
thin liquid film driven to spread by Marangoni stresses. Thein which H andI’ represent infinitesimal disturbances in the
horizontal coordinatess* andz*, are scaled by the length film thickness and surfactant concentration, respectively.
of the initial surfactant stripl.; ; the vertical coordinatey*
is scaled by the initial film thicknessig . Within the lubri-
cation approximation, the axial and transverse velociti&s, A. Linearized formulation
andw*, are scaled by* while the vertical velocityp™*, is
scaled bysU*. The characteristic time scale is given by 1 Base states
Ls/U* and the characteristic pressure acting throughout the’

film is given by u* U*L§/H§?=TI1*/H§ . The local surface In the absence of disturbanceld £T'=0), the spread-

concentration and surface tension are normalized by theihg is simply a function ok andt and Eqgs(1) and(2) reduce
values at the origin, namely;, and oy, . Likewise, the local  to the form

driving force for spreading is normalized By* .
The inertial terms in the Navier Stokes equation can be

ignored provideds2Re<1. In this system, botz and the :} 2 _E 3 _ (i )
Reynolds number, Re(p*U*H3})/u*=(p*I1*2L})/ Ho, Z(HOFOX)X 3(H°HOXXX)X A HoHOX < ©
w*2, are vanishingly small. For sufficiently thin films, the

Bond number, Bep* g* HE %/1T*, is negligible. There are Ty =(ToHoT ) +ip —9(1“ H2H, )

three relevant dimensionless numbers appearing in the equa- O R T A

tions of motion which reflect the importance of surface cur- 3 /T
vature, surface diffusiofrepresented by the diffusion coef- — Al —2H, ) . (6)
ficient D), and van der Waals forces. These numbers are 27\ HE

0
defined by an inverse modified capillary numbe, h bscriot “0” will h forth refer to the b q
— ; e subscri will henceforth refer to the base flow
=g20% ITI* (related to the usual capillary number, Ca P

=u*U*/o* | by C=¢3/Ca), a surface Peclet number,.Pe solu_tions_(undis'Fur_bed_statesOther _subscripts will refer to

=U*L*/Df =TT*H%/u*D*, and a modified Hamaker partial differentiation in space or time. The coupled equa-
0TS 0 s’ tions (5) and(6) are solved subject to the following boundary

conditions at the originx=0, and far downstreanx— o:

X

constant, A=A/6I1* H’52. The two coupled equations de-
scribing the spatio-temporal evolution of the film thickness
and surfactant concentration are defined by Efjsand (2)
below. Complete details of the derivation leading to these
differential equations can be found elsewhEy&!18-20.22

Ho(04)=0, Houx(04)=0, and T, (01)=0, (7)

Ho(,t)=1, Hox(,t)=0, andIo(»,t)=0. (8

1 C
2 3y3
Het EV'(H Vao)+ §V'(H VoH) The constraints at the origin reflect symmetry and no-flux

aboutx=0 while the far field constraints reflect undisturbed

LAV, iVH -0 1) conditions far from the advancing surfactant front. The base
H ' state initial conditions, chosen to mimic a flat, uniform liquid
film partially covered by a surfactant monolayer of constant
I+V-(HI'Vo)+ §V~(FH2V3H) concentrationA , are given by
2

Ho(X,to):]., FO(X,IO)ZO5AL[l—tanf'(B|_(X—X0))]
2av | Lvn )= L 2 ©

277 | 2 ~Pg The surfactant concentration resembles a top hat distribution

L . . which vanishes smoothly near=x,. Although this choice
Although C scales withe®, the capillary terms are retained ot injtial and boundary conditionéhe far field constraints in
since the surface curvature achieves values of ordefariiculay represent the desired experimental conditions,

~2y 26 ;
O(e™7).™ Equations(1) and (2) are coupled by the surfac- ey preciude the possibility of steady-state base flow solu-
tant equation of state which relates the surface tension to thg, s

local surfactant concentration. Since the monolayer rapidly
expands to cover the entire liquid surface, we choose the
S|mpltist relatlon_ appropriate for molecules in a gaseous, ... b nce equations
state,” namelyoc=1-T.

We seek disturbances of the formH([T)(x,z,t)
ll. MATHEMATICAL DESCRIPTION OF SPREADING =(¥,®)(x,t)e?, describing a function which propagates
DYNAMICS and evolves in time in the streamwise direction while exhib-
gting sinusoidal character in the transverse direction. The dis-
turbancesV and® are determined from the following set of
equations representing a disturbance of transverse wavenum-
H(x,z,t)=Hg(x,t)+H(x,z1), ()  berk:

The response of the system to small disturbances is o
tained by linearizing Eq91) and(2) according to
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1 2 KZ 2 ¢ 3 2 2 3 3 4143
\I’tzﬁl[\Pi@]:E(Hoq)x‘*'ZHOFOx\P)x_7H0q)_§[(H0Wxxx+3H0HOXXX\p)x_K ((HO)X\I,X_I—ZHO\PXX)_FK HO\P]

—A[(2(Hq)?~HoHo, —K’H3)W —2HoHo W+ HEW , J/HG, (10)
1
O,=L[V,D]= (T ol oV +Holox® + T oHo®, ) — KT oHo® + E(CDXX_ K2®d)
C 2 2 ¢ 2 2 2 4 2
- E(FOHO‘PXXX+ 21_‘OHOHOXXX\I"F HOHOXXX(I))X_ E( -K ((FOHO)X\I’X+2F0HO\PXX)+ K I‘OHO\P)

3
—EA[(6I‘0(HOX)2— 2HoHo I'o, = 2Hol'oHo — K2T'oHE) W1/Hg

3 3
—5AL(—4HoToHo, + HSFOX)\PXJrFHS\PXX]/Hé—EA[(—2H0HSX+ HEHo, )@ +HGHo @, J/HG.  (11)

The linearized operators;; and £,, are nonautonomous We introduce the following quantifiers of transient
since they depend on the temporal behavior of the basgrowth or amplification. One useful measure of the mechani-
states. For reasons similar to the choice of base state condial energy contained in the base flow or an applied distur-
tions, the boundary conditions applied to the disturbancdance is

functions satisfy

1 0
V,(04)=0, W,0t)=0, and®,(0t)=0, (12 Eq= EJO g*(x,t)dx, whereq=",®,Ho,I'o. (15
W(,1)=0, W,(*,1)=0, and ®(x,t)=0. (13 The ratio of the disturbance energy to that contained in the
The initial conditions for¥” and® are given by evolving base state is described by
- — @ CL(x—xg)? E;i(t .
T(xt) = P(x,to) =€~ (14 M0 =2 here(i.j)= (¥ Hg) o (B.Ty). (16

The disturbances in the film thickness and surfactant concen- Ei(V

tration represent Gaussian distributions centered=at;. In The disturbance amplification, defined as the energy ratio at
this paper, we limit our studies to disturbances applied aheatime t compared to its initial value dt, is given by

of the initial monolayer such that,>x,. Since the distur-

bance equations are linear, the amplitudegloind ® can Gi(t)EM‘_(t)' where(i,j)=(¥,Ho) or (®,Ty).

be set to unity with no loss in generality. Other choices of Mi(to)

initial conditions have produced the same qualitative behav- (17)

ior described below®22 Along with these definitions, the associated time-dependent

“growth rate” is represented by
3. Quantifiers of transient amplification

As described in the Introduction, the inherent time de-  ;
pendence of the base state governed by Efs.and (6)
precludes a straightforward modal analysis. In addition, th&equation(18) is used as a criterion of “momentary stabil-
prediction of asymptotic stability for the quasi-steady-statety” in the sense of SheR’ ;>0 describes momentary in-
solutiong®2°does not rule out the possibility of large tran- stability while ;<0 describes momentary stability. The cri-
sient growth at early or intermediate time scales. In considterion for asymptotic stability, determined from eigenvalue
ering the “stability” of a time variant base state, however, analysis of the non-normal operators, would correspond to
one must consider the evolution of a disturbance by compariim, ... Q;<0.21%227
son with the evolution of the base state itself. For example, if
a disturbance decreases in time but the base state decreases at
a faster rate, then the disturbance will appear amplified a
later times. Conversely, if a disturbance increases in time bu
the base state increases faster still, then the disturbance will Equations(5), (6), (10), and (11) are solved simulta-
appear to decay in tinf€.Since the tendency toward stability neously by the method of lin&for given values of’, Pe,,
or instability at any instant in time is all that can be reliably A, and K. The spatial derivatives were approximated by
stated in the case of unsteady base states,?Spenposed second-order central finite differences. The equations were
the concept of “momentary stability” and an associatedupdated in time using Gear's method implemented through
growth rate criterion in order to quantify the instantaneoushe ODE solver.sobe?® The number of grid points used in
stability of time variant base flows. the computations varied between 201 and 501 depending on

e | _
=Gi TR where i=V or &, (18

. Solution procedure
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2.0
1.5
H, 10}
0.5
0.0
0.0 )
04 F FIG. 3. (a) Base state solution,
: Ho(x,t), with evolved disturbances,
0.2 - T(x,t) and ®(x,t), for K=5, Pg
0.0 | =500, C=10"%, and.4=0. The time
k4 02 + At=1, 2, 4, 8, and 12 refers to time
04 [ after surfactant depositiorib) and(c)
e 3-D re-constructions of the total film
-0.6 - thicknesgwith an applied disturbance
-0.8 of K=5 for At=2 (b) and At=12
0.0 (c)]. Additional parameter values are:
0.012 to=1, A_.=0.1, B_=30, C, =12, x,
=0.4,x,=0.7, andN=301.
0.007 -
D
0.003 +
-0.003
0.0

(@)

the degree of resolution required to produce the full structuréng the degree of mode coupling this dynamical system
of the base states. Solution convergence was easily obtainedight allow. To make a direct comparison with the results of

by refining the spatial grid. the linearized theory, the amplitudes of the incremedks,

and;ﬁ“, are given by
B. Nonlinear formulation

:S‘H =g[maxHy(Xx,to) ], 21
The fully nonlinear Eqs(1) and(2) were also integrated ! < o(x.to)] (21)
directly to yield the spatio-temporal evolution of specified .
states in the film thickness and surfactant concentration de-  6T" = e[ maxIo(X,to)]. (22)
scribed by X
H(x,z,tp) =Hg(X,tg) + SH(X,z,tp), The magnitude ot (not to be confused with the lubrication

_ (19 parameter described in Sec) Ih the computations ranged
I'(x,2,t9) =T'o(X,to) + 8I'(X, 2, o). from 0.01 to 0.03. Disturbances of larger initial amplitude,

The functionsHy(x,tp) and'y(x,t,) define the film thick- &, gave rise to numerical instabilities and were not pursued

ness and concentration profiles at some specified time further. The same physical boundary conditions described in

=t,. Forty=1 (the origin of time, these functions are sim- Sec. lll A were used to solve Egél) and (2). In addition,

ply given by Eq.(9). For later timest,>1, Hy(x,t;) and  periodicity in the transverse direction was enforced by

I'o(x,to) represent the numerical solutions to E@8.and(6) ~ H(x,0t) =H(x,W,t) andI'(x,0t) =T'(x,W,t).

evolved throught,. The disturbancessH and 8T", were We investigated various combinations of the parameter
chosen to have a generic form list given byA,, B_, C, Cy., Xo, Xs, K, andt, for experi-
L Cuxexo? mentally relevant values of the dimensionless numlggrs
oH(X,z,tg) = 6He "N R(2), Pe, and.A. The method of lines was used to integrate the

(20) equations of motion and the resultant ODE’s were solved
usingLSODE. The Gear integrator option, which is a variable-
where the subscript N refers to the parameter value used step, variable-order, implicit method known to handle stiff
in the nonlinear computations. The functi®{z) represents ODE’s reliably, was originally implemented. This choice
a summation of sinusoidal functions according R{z) lead to computations of ordéd(N2N2), whereN, and N,
=2}chos(2rrKj(z/V\/)), whereK; is the wavenumber of an represent the number of grid points in thandz directions.
applied disturbance and is the width of the computational When the number of grid points necessary to resolve particu-
domain. The choice of cosines assures that the functiorarly steep fronts at the advancing monolayparticularly
given by Eq.(19) satisfy no flux conditions az=0 andz  for large Pg and smallC) were as large ad,=121 and
=W. The summation of sinusoidal waves is useful for prob-N,=241, we switched to the Adams option, an explicit

ST (x,2,t5) = o e CNX"X9°R(2),
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101.0 T 30 T
K=0
K=5 25
81.0 K=10 A
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G, G,®) s}/
410 |
N 1.0 |
210 05
1.0 0.0
K 11.0 13.0
(a) (b)
101.0 T T 251.0 T T
81.0 - 201.0
61.0 1510
G, G,®

41.0 -

101.0

51.0

(d)

FIG. 4. Amplification ratiosGy andG, , corresponding to the linearized transient growth fap%00,C=10"5, and.A=0. (a) and(b) The behavior oG,
andG,, for various wavenumber disturbancés) The dependence @, on the parameteB, , which controls the initial shear stregd) The dependence
of Gy on the parametexs, which defines the central location of the applied disturbance. The remaining parameter values are given in Fig. 3.

scheme appropriate for stiff equations provided the step sizegsnd 12 after spreading commences for parameter values
are very small. With this choice, the computations reduce te=10"° Pg=500, and4=0. As time evolves, the solutions
order O(NyN,). The large number of grid points place an proaden and decay since the driving force for spreading,
effective restriction on the magnitude of fdC, which in which is proportional to the gradient in concentration, con-
these studies spanned the range<F#000 andC<10"°. tinually diminishes. Figures(8) and 3c) represent 3-D vi-
The grid sizes used in the computations ranged from 0.01 tgualizations of the surky(x,t)+0.01¥ (x,t)cosKz) at At
0.02; solution convergence was monitored by grid size re=2 and 12(integration commenced &§=1) for K=5. The
finement. The computational runs required anywhere from gjsturbance in film thickness, first situated ahead of the sur-
few minutes to a few hours on an SGI INDIR4400SQ,  factant monolayer, is intensified by the passage of the ad-
depending on the parameter values used. As a performang@ncing wavefront but eventually decays and localizes be-
check of this algorithm, we explicitly verified that for the hind the steep and rapidly moving front. As observed in
same parameter choices, both the 2-D direct integration Qfxperiment, the film corrugations develop a transverse digi-
Egs. (1) and (2) obtained with the explicit Adams method tation which localizes behind the advancing ridge. Figures
and the 1-D solution to Eqs5) and (6) using the implicit  4(a) and 4b) document the transient growth and decay ex-
Gear's method produced the same restlts. perienced by the spreading film and surfactant concentration
for the same parameter values but various wavenumber dis-
turbances. Large transient growth@y(t) is evident on the
order of a few shear times. The large wavenumber distur-
bances dominate the responsé&Eip(t) at early times both in
We first consider the general character of the solutions teamplitude and growth raténot shown?®?? but eventually
the linearized disturbance equations. Shown in Fig) @&re  fade away. The smaller wavelength disturbances grow more
several snapshots of the base sthtg, and the disturbance slowly and achieve smaller amplitudes although they persist
functions,¥ and ®, corresponding to timeAt=1, 2, 4, 8 for longer times. In contrast to these observations, Fig) 4

IV. RESULTS AND DISCUSSION

A. Linearized transient response
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FIG. 5. Linearized response and transient growth of an applied disturbanc& witd). (a) The effect of increasing R®n the base staté{, (att=3), and

on the corresponding amplification ratiGy,(t). The capillary constant is held fixed &= 105, (b) The effect of decreasing on the base staté], (att
=3), and on the corresponding amplification ra@y,(t). The surface Peclet number is held constant g&B€0. The remaining parameter values are given
in Fig. 3.

indicates thatG4 does not experience any significant en-eventually fades away and the system is asymptotically
hancement. This behavior can be understood by appealing &iable.
the nature of the surface shear stress caused by concentration The physical mechanism leading to the large transient
gradients. Even a very small redistribution of surfactant orgrowth is linked to the extraction of energy from the spa-
the surface can have a large effect on the film thicknesdjally inhomogeneous waveform, as well as the evolution of
which is sheared and thinned by even the smallest shear region of constant gradient in surfactant concentration be-
stress. Figures(d) and 4d) demonstrate the effect of vary- hind the advancing frorf®=2?The reader is referred to these
ing B_, which controls the sharpness of the drop-off in thereferences for an in depth discussion. This mechanism is
initial surfactant distribution function and therefore the sizequite different, however, from the fingering behavior ob-
of the initial shear stress, and, the peak location of the served at the leading edge of other free surface spreading
disturbance functions. The larger the initial shear stress aproblems, like the flow down an inclined plafié* or the
the longer the base flow is allowed to develop and steepethermocapillary driven spreading of a thin liquid fiffai®3In
before encountering the disturbances, the larger the corréhese other spreading processes, the instability occurs right at
sponding transient response. the leading edge and causes the spreading front to separate
Figures %a) and 3b) depict a similar trend i (t) as  into long narrow rivulets which never undergo spreading,
the parameter§ and Pg are varied. The examples shown shielding, or tip-splitting. Furthermore, when the amplitude
correspond td& =10, the mode exhibiting the largest overall of the advancing ridge approaches values on the order of the
amplitude in Fig. 4a). The solutions clearly show that a thickness of the pre-existing liquid film, the fingering disap-
decrease i or an increase in Re both of which produce a pears altogether, in sharp contrast to a spreading surfactant
steeper advancing front, enhance the transient growth of digdm.
turbances. Other parameter choices which produce steeper We have recently investigated the effect of van der
fronts and correspondingly larger values of the surface curwWaals forces on the spreading profile for positive values of
vature(and higher derivativdsbehave similarl?°=??In ev-  the Hamaker constant which promote film thinning. It is well
ery case examined, provided=0, the transient growth known that the inclusion of such a force can lead to dewet-
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FIG. 6. The linearized response to disturbances in the presence of van der Waals t@rihg(at t=4) andGy, for Pe=500,C=10"5, to=1, A =1,
B, =20, C, =200, xq=0.1, x;=0.2 andN=301. 3-D re-constructions of the total film thickne$sr applied disturbance witk=10): (b) .A=0 and(c)
A=10"%. The remaining parameter values are giverian

ting and film rupturé*~3We have found that the inclusion of disjoining pressure, then, gives rise to a spanwise film
of this force in our calculations dramatically changes thecorrugation which localizes behind the advancing front,
behavior ofGy at intermediate times. As shown in Fig. 6 for which persists to later times, and which resembles the pat-
parameter valuesi=10 3, Pg=500, andC=10°, once terns observed experimentally. More studies of this sort are
the film near the source undergoes sufficient thinning, vamequired in order to determine whether the experimental pat-
der Waals forces contribute to the amplification of distur-terns are evidence of a “momentary instability” which pro-
bances,Gy(t), to produce a second even larger increaseduces transient film corrugation driven by a coupling be-
(The parameter values fé, , B, C,, Xg, andx, are dif- tween Marangoni stresses and van der Waals forces. This
ferent than those used in Fig. 5 and were chosen simply tooupling may eventually explain why the fingering patterns
initiate more rapid film thinning near the source regjorhis  have never been observed in films thicker than a few milli-
behavior suggests that other forces which promote film thinmeters, since the magnitude of the flux due to the van der
ning will give rise to similar amplification i (t). Unfor- ~ Waals force is insignificant in thicker films. It may also ex-
tunately, the computations with nonze#ohad to be stopped plain why the fingering patterns become more ramified as the
when the spatial gradients could no longer be resolved accuhickness of the underlying liquid film decreases.

rately. Different numerical techniques will be required to
handle the onset of film rupture. Figurehpand Gc) depict
the sumHg(x,t) +0.01¥ (x,t)cosKz) for a disturbance of
K=10 atAt=3 after deposition, i.et=4. Preliminary stud- For the parameter space investigated we have found that
ies indicate that the streamwise and transverse componeritgegration of the nonlinear equations produces film thick-
of the van der Waals term are destabilizing while capillaryness and surfactant concentration profiles which appear al-
forces as well as streamwise Marangoni flow exert a stabimost identical to those obtained from the linearized theory
lizing influence?® The stabilizing effect of Marangoni shown in Fig. 3. In addition, the amplification rati@,, and
stresses stems from their tendency to refill the surfactant exsg, , from the nonlinear computations shown in Fig. 7 can be
pelled from the thinning region by van der Waals forces indirectly compared to the ratios previously shown in Figs.
agreement with previous studigsThe addition of this type 4(a) and 4b). The overall shape and decay of the different

B. Nonlinear transient response
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FIG. 7. Amplification ratios Gy and G4, corresponding to the nonlinear transient growth, as a function of various wavenumber disturbances. Relevant
parameter values: Pe500,C=10° A=0,£=0.01,t,=1, A, =0.1, B, =30, Cy=12, x,=0.4, x,=0.7, N,=101, andN,=201.

wavenumber disturbances resemble each other very closelywavenumber will maintain that wavenumber throughout the
The only observable differences are reflected in the maxispreading process, never evolving into a disturbance that
mum amplitude achieved. For example, the-20 mode in  contains subharmonics of the original frequency. This single
the linear approximation achieves its maximum value of 81frequency response was also observed by Tryggvason and
in just undert=2, while in the nonlinear computations it Aref?’ and Tan and Homs§ in their simulations of immis-
reaches a value closer to 88 just after2. Surprisingly, cible and miscible viscous fingering. Tan and Homsy sug-
even though the disturbances grow to be quite large andested that this feature was caused by the transverse con-
could potentially cause the nonlinear terms in the equationstraint of periodic boundary conditions which might pin the
to contribute significantly, no such effect was observed. Insystem to the original imposed wavelength and disallow the
addition, the nonlinear terms do not produce disturbanceformation of subharmonics. The simulations of Tryggvason
with wavenumbers different than the initial wavenumber.and Aref and Tan and Homsy did produce mode coupling
We have found that an applied disturbance with a giverwhen the original applied disturbance contained several fre-

2 -2 -1 0

-2 -1 0 1
(c)

FIG. 8. Contour plots of the disturbance film thickness for a perturbation consisting of three wavend@bBrd,0, and 20, applied with equal weight and

propagated through the nonlinear equatidas.At=2, (b) At=4, (c) At=8, and(d) At=12. The relevant parameter values arg=Ps00, C=10"°, A

=0, N,=121, N,=241. The remaining parameter values are given in Fig. 7.
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FIG. 9. A cross-sectional view oH, and 6H (for K=5) propagated
through the nonlinear equations for a base state allowed first to evolve
undisturbed through,=3. 6H has been magnified by a factor of 10. Rel-
evant parameter values: £€5000,C=10"5, A=0, ande=0.02. The re-
maining parameter values are given in Fig. 7.

guencies, especially pairs or triplets of frequencies that could

produce resonance. To investigate this possibility, we tested

the response of our system of nonlinear equations to a dis-

turbance consisting of three cosine modes., m=3 in

R(2)] in Eq. (20) of equal but small amplitude consisting of

the fundamental wavenumb&r=10, its harmonicK = 20,

and its sub-harmoni&=5 for parameter values Pe500, (b)

C=105, and.A=0. Contour plots of the disturbance film

thickness, obtained by subtraction of numerical solutions of!G. 10. 3-D images of the film thickn_ess includir_lg an applied disturbance

Eqs. (1 and (2) with oH >0 and o0 from those with 1 1020t roveh e st edonsn e presece o v

S6H=0 andéI'=0 (i.e., base state solutionsare shown in =1,A =1, B, =20, Cy=200, x=0.1, x;=0.2, N,= 71, andN,=141. (a)

Fig. 8. White patches represent regions of highest elevatiom=0 and(b) .A=10"3.

while black patches represent regions of lowest depression.

While the disturbance film thickness initially reflects the

presence of the three imposed wavenumbers, the system

eventually sustains only the smallest imposed wavenumbemagnitude of the disturbance film thickness has been exag-

namely K=5. This tendency during spreading to move to-gerated by a factor of ten to aid visualization. The black dots

ward patterns with a smaller wavenumber was also observemharking the peaks ity and §H are a guide to the eye for

in the linearized equations whose result is shown in Fig. 4comparing the propagation speeds between the two wave-

The smaller wavenumber corresponds to large wavelengtforms. The initial disturbance in the film thickness is cen-

disturbances and the trend toward wider “fingers” can betered about the ramp-like portion but extends throughout the

interpreted as a coalescence process. In the context of uentire profile, affecting the region near the source all the way

stable viscous fingering, this trend has been called a modue the leading edge. As the wavefronthh, propagates for-

latory instability and has been observed in both immiséible ward, its shape broadens but the maximum value remains

and misciblé® fingering. fairly constant for the period shown. The disturbanéH,,
Besides studying the behavior of the nonlinear equationmigrates toward the wavefront at early times but eventually

to disturbances imposed at the very beginning of the spreadtannot keep pace with the leading edge. Aftdr=6, the

ing process, we also conducted studies in which the filnpeak in the disturbance has fallen behind the moving front

thickness and surfactant concentration were allowed t@ontinually slowing with respect to the leading edgeHp.

evolve for some time before a disturbance was applied. Ii\s seen previously in Fig. 3 for the linearized system and for

Fig. 9 is shown the evolution of the film thickness and itsdifferent initial conditions, the disturbance localizes once

associated disturbance #=5, which was placed on the again behind the moving front. Similarly, the inclusion of

film after it had evolved for a timéy,=3. The profiles rep- van der Waals forces in the nonlinear equations causes the

resent cross-sectional views obtained for timés=0, 6, 10, disturbances to localize even further back toward the sharply

16, and 22 after the disturbance was applied and for paranthinned region near the source. The profiles in Fig. 10 are

eter values Pg=5000,C=10°, A=0, ande=0.02. The similar to those in Fig. 6 and reinforce the observation that
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the nonlinear terms do not contribute any new feature to théions of motion produced digitated surface structures which
flow. resemble closely the patterns obtained with the linearized
equations. It appears that the effect induced by including this
term in the linearized set of equations is much more dramatic
V. CONCLUSION than any effects produced by considering the fully nonlinear

A previous study has shown that the linearized equationS€t °f eguations. _ L
of motion governing the spontaneous spreading of a surfac- OUr parameter range for the nonlinear studies indicate
tant monolayer strip on a thin liquid film predict asymptotic that the nonllnea_r descr_|pt|on offers I|tt|_e physmal insight not
stability 181° Recent work has suggested, however, that thélready present in the linearized desc_rlptlon. The mogt pow-
transient response of this hydrodynamic system can perful effegt on the surfactant coated _f|Im appears to lie with
significant?! We have shown that infinitesimal disturbancestn® coupling between the already thinned film produced by
to the film thickness become amplified by several orders of’€ rapid Marangoni spreading and the even stronger thin-
magnitude, depending on the size of the initial shear stres§ing later induced by the van der Waals forces. Itis as if the
the spreading speed, and other physical parameters contrdim has been primed by the first process to produce condi-
ling the thickness of the advancing ridge and its degree ofionS Which intensify disturbances that would normally de-
curvature(and higher order derivativisin addition, the in-  €&Y- In addition, the rapid thinning strongly localizes distur-
clusion of a simplified van der Waals term in the linearizegP@nces in the thinnest parts of the film. A review of the
system of equations encourages strong thinning in the agxperlmer_ntal literature reveals _tha_t the digitated patterns
ready thinnest parts of the spreading film intensifying theMOSt easily appear on very thin films. For example, the
transient growth at intermediate times. The relative energy ofranched patterns shown in Fig. 1 occur in films whose
the disturbances produced in the absence of van der Wadl&ickness makes them susceptible to van der Waals forces.
forces is always observed to undergo large transient growth W€ hope our studies will focus attention on the signifi-
and eventual decay. When the computations are performegnce of van der Waals forces on the spreading process and
with the van der Waals term, the disturbances also grow an@incourage experimentation which can ascertain the validity
decay but at intermediate times suddenly experience a sef this claim. In addition, we have initiated numerical work
ond boost in energy. This secondary amplification reflects &° Study the effect of white noise on the spreading dynamics
type of resonant behavior between the thinning caused by tHa"d 0 investigate parameter values which can lead to
spreading film(due to Marangoni stresseand the van der bran.chlng and t|p—spI|tt!ng, processes more closely related to
Waals driven thinning which enhances transverse corrugdonlinear phenomena in hydrodynamic systems.
tions established previously by the rapid Marangoni flow.
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