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ABSTRACT

Surface tension gradients created by a nonuniform temperature distribution in a thin
liquid film can force vertical spreading beyond the equilibrium meniscus [1]. Experiments
designed to probe the flow behavior of super-meniscus films have shown that the leading

- edge can either spread uniformly with complete surface coverage or become corrugated and
breakup into long slender rivulets. We show that within linear stability analysis, both the
conditions for unstable flow and the most unstable wavelength compare favorably with recent
experiments reported in the literature.

INTRODUCTION

Coating processes usually require a forcing mechanism to induce spreading over the
surface. Although flows can be driven by a mechanism as simple as tilting or spinning,
flows driven by surface tension gradients have the advantages of operating independent of
geometry and allowing the substrate to remain stationary.

Temperature gradient driven films of silicon oils on both vertical [2] and herizontal (3]
silicon wafers have been shown to spread with a corrugated leading edge. Such unstable flows
exhibit a capillary ridge or “bump” at the leading edge. Surprisingly, similar experiments
examining the flow of squalane on a vertical silver plate demonstrate that the film climbs
with a uniformly straight front [1]. Furthermore, rather than exhibiting the characteristic
advancing ridge, these profiles decrease monotonically as the contact line is approached. The
two observations seem contradictory: one would expect similar behavior for both liquid-on-
solid systems since the liquids completely wet the different substrates.

It has been proposed in the literature [4] that the capillary ridge must be present in order
for the instability to occur. We present here a linear stability analysis of films driven by
a constant temperature gradient. This analysis indicates a strong correlation between the
presence of z capillary ridge in the unperturbed film thickness profiles and the subsequent
formation of long rivulets at the advancing front.

PROBLEM FORMULATION
Governing Equations

Lubrication theory is valid for low Reynolds number flows for which the characteris-
tic extent in the direction of flow is much larger than the film thickness. The temperature

gradient driven films observed in Refs. [1-3] are therefore governed by the lubrication equa-
tions,
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Figure 1: Coordinate system. The y axis points into the page.
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where the = axis is along the vertical flow direction, the y axis is in the transverse flow
direction, and the z axis is perpendicular to the surface, as illustrated in Fig. (1). The
velocity components u and v represent flow in the = and y directions, while p denotes the
local pressure in the fluid. The air-liquid interface is described by z = A(z,y,t), which
represents the film thickness resting above the stationary substrate located at 2 = 0. The
viscosity, density, and local surface tension of the liquid are given by 5,p, and . In the
derivation which follows we assume that the temperature distribution mostly affects the
local surface tension, with local viscosity or density undergoing smaller changes which are
neglected, The boundary conditions are the no-slip requirement at the solid surface

U, 2], =0, (4)
and constant shear stress at the air-liquid interface
du
7= =7 (3)
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In regions of the flow where curvature terms become important, we assume relatively small
slopes, so that the capillary pressure throughout the film is given by p = —yV?h. Solving
for the height-averaged velocities with contributions from Marangoni flow, capillarity and

gravity yields
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Substitution of the velocities into the continuity equation
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with the requirement that the leading edge match smoothly onto a prewetting layer located
beyond the nominal contact line gives the film height profiles. For horizontal films, the last
term in Eqn. (6) is deleted. Moreover, for vertical geometries, this term can be neglected
for sufficiently thin films for which the Marangoni driving force is much larger than drainage
by gravity, i.e. "
i
h e (9)

Scaling

Away from the leading edge, the film is relatively flat and curvature effects can be ne-
glected. Balancing viscous and Marangoni forces in this “outer” region yields the character-
istic velocity scale for the system

U= —.
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Near the spreading front, curvature effects must be included; the interface must curve in
order to contact the substrate. Inclusion of capillary effects in the balance with viscous and
Marangoni forces gives the characteristic length scale over which the interface curvature is
significant

I=h(3Ca)"5, (11)
where Ca is the capillary number, defined by

Ca=-—, (12)

and k. represents the film thickness at the leading edge of the outer region.

To address the stability of the leading edge which occurs in the vicinity of the capillary
region, we must first solve for the unperturbed film thickness profiles in the inner region.
We therefore rescale all variables in a manner similar to other driven flow problems [4-6].
This rescaling effectively stretches the appropriate variables in such a way as to balance
contributions among all the local forces present in the capillary region. Spatial coordinates
are rescaled by I, the film thickness k by k., and time by U./l. Rescaling of Eqn. (8) yields
the appropriate dimensionless evolution equation for the film thickness
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The solution to (13) must satisfy the two required boundary conditions in ¢,
Aol e t—o (14)
hobd as £— —co (15)

A third boundary condition in ¢ is unnecessary; Eqn. (13) lacks explicit ¢ dependence and
is therefore translationally invariant. Boundary conditions in ¢ and an initial condition in £
are also not needed since the form of the profile disturbance in ¢ and { will be specified. The
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variables ¢ and ( are the dimensionless £ and y coordinates, and h and f are the dimension-
less film thickness and time. The ¢ coordinate has been scaled such that the origin translates
with the contact line so that ¢ is positive in the upstream direction. The parameter b is the
ratio of the precursor film thickness to the characteristic film thickness he.

RESULTS

Base Flow
To solve for the base flow profile and perturbation, we expand the film thickness as
h(f: Crt) = hO(E) + fh:(E»C, t)a (15)

where hg denotes the unperturbed film profile, ; is the disturbance, and € is a small param-
eter representing the strength of the applied perturbation. (The hats have been dropped for
clarity.) We find the shape of the unperturbed film and the perturbation by substituting the
expanded form of h into Eqn. (13). The base flow is given by the O(1) equation
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which must satisfy the boundary conditions
ho—1 as §—co (18)
ho—bd as §— —co. (19)

Again, a third boundary condition is unnecessary because (17) is translationally invariant.
Numerical solutions to (17) for various precursor thicknesses are plotted in Fig. (2). Note
that the height of the capillary ridge decreases with an increase in the precursor layer thick-

ness.
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Figure 2: Base flow film profiles for various prewetting layer thicknesses.
The profiles have been shifted to align the profile maxima.
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Linear Stability Analysis

The shape of the disturbance is given by keeping the O(e) terms and substituting in
the normal mode form for the disturbance

ha(€, ¢, t) = G(§)ezp(ial + ), (20)

where g denotes the wavenumber of the disturbance in the transverse flow direction and A
is the eigenvalue or growth rate of the perturbation. The resulting linear equation

]

BG + (1 + b)GE - a—é- [2G}lo - 3thh0555
~1 (Geee — 9°G¢)] + b3 (4G — ¢*Gee) = 0 (21)
is subject to decay boundary conditions
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Numerical solutions to Eqn. (21) for the largest growth rate as a function of wavenumber
are illustrated in Fig. (3). Note that the magnitude of the disturbance growth rate decreases
with an increase in the precursor film thickness.

DISCUSSION AND CONCLUSIONS

The above theoretical analysis is valid for constant shear stress driven flows for which
gravity is negligible. The base flow profiles of these spreading films contain a capillary ridge
at the leading edge whose magnitude decreases with an increase in the prewetting layer
thickness (Fig. 2). As the capillary ridge decreases or as the precursor layer increases, the
flow becomes more stable. As illustrated in Fig. (3), the film becomes marginally stable
for a prewetting layer thickness that is about half as thick as the characteristic thickness
of the spreading film. This result indicates a strong correlation between the capillary ridge
thickness and the linear stability of the film.
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Figure 3: Dispersion relationship illustrating the largest eigenvalue
B as 2 function of wavenumber g for the films illustrated in Fig. (2).

We have compared our predictions with experiments reported in the literature for spread-
ing silicon oil films [2,3]. The climbing films were sufficiently thin to satisfy Eqn. (9), and
horizontal films were unaffected by drainage. The theoretical analysis assumes, however, the
presence of a prewetted layer ahead of the leading edge. Although the surfaces were not
precoated in the experiments, evaporation/condensation, van der Waals forces, or diffusion
may have deposited a very thin layer of fluid ahead of the spreading front. The presence of
such a prewetting layer was found by Carles et al [7]. It appears therefore that the theo-
retical predictions for very small prewetting layers most closely resembles the experimental
conditions. Small values of b yield relatively large capillary ridge thicknesses, which are in
agreement with experimental observations. Furthermore, the observed instability is consis-
tent with the theoretical prediction that flow with large capillary ridges become unstable. In
addition, we have found that the most unstable wavelength is A ~ 181, which is in excellent
agreement with experiments [8].

In contrast to the silicon oil films, the squalane films reported in Ref. [1] lacked a capil-
lary ridge and spread with a straight front. The small temperature gradients used in these
experiments produced films of sufficient thickness for which drainage velocities become com-
parable to Marangoni velocities. Inclusion of drainage by gravity in the theory is expected
to eliminate the capillary ridge to produce theoretical profiles which decrease monotonically
as the edge is approached. We are currently investigating the stability of Marangoni driven
flows with the inclusion of drainage. If the additional mechanism eliminates the bump and
suppresses the instability, this result will provide strong evidence for the link between the
presence of the bump and the instability and will elucidate the reason behind the discrepancy
between the similar experimental systems.
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