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Experiments by several groups during the past decade have shown that a molten polymer nanofilm

subject to a large transverse thermal gradient undergoes spontaneous formation of periodic nanopillar

arrays. The prevailing explanation is that coherent reflections of acoustic phonons within the film cause a

periodic modulation of the radiation pressure which enhances pillar growth. By exploring a deformational

instability of particular relevance to nanofilms, we demonstrate that thermocapillary forces play a crucial

role in the formation process. Analytic and numerical predictions show good agreement with the pillar

spacings obtained in experiment. Simulations of the interface equation further determine the rate of pillar

growth of importance to technological applications.
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The fabrication of high resolution, large area arrays for
micro-optic, photonic, and optoelectronic devices relies
heavily on photolithographic patterning by projection of
uv light. This process is inherently slow and costly due to
multiple step-and-repeat procedures required for deposi-
tion, exposure, and removal of photoresist layers for con-
struction of 3D components. Harsh developer and etching
solutions also imbue structures with significant surface
roughness, which ultimately limits performance due to
scattering losses. Photoresist masks must also be uv com-
patible, which restricts the assortment of materials used in
processing. Alternative patterning techniques based on
‘‘resistless lithography’’ may usher in a new era in litho-
graphic patterning in which structure formation is obtained
by directed deposition or mechanical embossing of mate-
rial as with microcontact printing, micromolding, micro-
embossing, and nanoimprinting [1,2]. An even newer
approach for emergent technologies relies on film pattern-
ing by hydrodynamic instabilities in nanoscale films as
with templated dewetting [3]. The use of fluid instabilities
for controlled formation of large area patterning provides
an interesting route for noncontact fabrication of periodic
microscale and nanoscale arrays.

Several groups pursuing this approach have investigated
the spontaneous formation of pillar arrays in molten poly-
mer nanofilms subject to a large transverse thermal gra-
dient [4–9]. The prevailing explanation [7,8] is that
coherent reflections of acoustic phonons (AP) within the
film cause periodic modulation of the radiation pressure,
similar to an acoustic Casimir interaction force [10]. This
normal stress opposes capillary forces and enhances the
growth of protrusions. Such a process, however, requires
coherent phonon propagation within a molten amorphous
polymer film and an average phonon mean free path at
least as large as the film thickness. Experiments have
shown that solid nanoscale polymer films at temperatures
�193 � T � 27 �C can support phonon attenuation
lengths of about Oð101–102Þ nm at frequencies in the

100 GHz range [11]. However, such long propagation
lengths have never been demonstrated and are considered
unlikely in amorphous molten films (glass transition tem-
perature 100–120 �C).
By investigating an unexplored limit of interfacial in-

stability easily accessible to nanoscale films, we demon-
strate that thermocapillary (TC) forces play a crucial if not
dominant role in this formation process. According to this
mechanism, perturbations in film thickness generate peri-
odic disturbances in the surface temperature which lead to
periodic modulation of the interfacial thermocapillary
stress. These tangential stresses cause the polymer melt
to flow toward cooler regions, thereby driving protrusions
toward a cooler target substrate. These elongated pillars are
observed to solidify rapidly in place as soon as the driving
force is removed. Nanostructures fabricated in such non-
contact fashion from the molten state are expected to
exhibit superior optical performance due to the specularly

FIG. 1 (color online). (a) Experimental setup for formation of
nanopillar arrays. (b) AFM image of PMMA pillars [5]: d ¼
260 nm, h0 ¼ 95 nm, �max ¼ 3:4 �m,�T unknown. (c) Optical
micrograph of PS pillars [23]: d ¼ 345 nm, h0 ¼ 100 nm,
�max ¼ 4:5 �m, �T ¼ 46 �C. (d) AFM image of PMMA pillars
[9]: d ¼ 163 nm, h0 ¼ 100 nm, �max ¼ 6:5 �m, �T ¼ 10 �C.
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smooth interface obtained upon solidification. Investiga-
tion of this new regime of instability is therefore perti-
nent to fundamental studies of thermocapillary flow as
well as technological innovations for noncontact resistless
lithography.

A schematic diagram of the typical experimental setup
is shown in Fig. 1(a). Polymers like polystyrene (PS) or
poly(methyl methacrylate) (PMMA) are dissolved in sol-
vent and spun cast onto a silicon wafer to a thickness 80 &
h0 & 130 nm. The coated wafer is overlaid by a second
wafer and vertical spacers are used to maintain a separation
distance d > h0 where 100 & d & 600 nm. Ratios of d=h0
in experiment range from approximately 2–8. The bottom
wafer is placed on a hot substrate held at temperature
130 & T2 & 170 �C; the polymer-free surface is cooled
from above by proximity to the cold substrate held at T1 <
T2. Both temperatures are maintained above the polymer
glass transition to ensure a molten film during the forma-
tion process. Despite the fact that 10 & T2 � T1 & 55 �C
is not large, the small gap size establishes a very large
transverse gradient �T=d� 106–108 �C=cm. In the ex-
periments under study, films were subjected to a thermal
gradient overnight and then quenched to room temperature
to solidify the structures formed. The top wafer was then
removed and optical microscopy or atomic force micro-
scope (AFM) images obtained, which revealed the patterns
shown in Figs. 1(b)–1(d).

It is well known that much thicker liquid films (cm to
mm) subject to much smaller thermal gradients can de-
velop periodic cellular patterns through Rayleigh-Bénard
or Bénard-Marangoni instability [12]. These instabilities,
however, generate shallow corrugations, not needlelike
protrusions. Onset of instability requires that the critical
Rayleigh number Rac for buoyancy driven flow (which
scales as h40) or the critical Marangoni number Mac for

thermocapillary flow (which scales as h20) exceeds 660–

1700 or 50–80, respectively, depending on boundary con-
ditions. For the nanoscale films shown in Fig. 1, Ra �
10�16 and Ma � 10�8, ruling out these mechanisms as
possible causes for pillar formation. A lesser known de-
formational instability [13] leading to more pronounced
dry spots or elevations has recently been observed in
microscale films (50 & h0 & 250 �m) [14–16] in which
the thermocapillary stress is counterbalanced by capil-
lary and gravitational forces. Onset of instability requires
that the inverse dynamic Bond number Dc ¼
�T�Tfilm=�gh

2
0 � 2=3ð1þ FÞ�1, where � is the liquid

density, �T � jd�=dTj, � is the liquid surface tension,
�Tfilm is the temperature drop across the liquid layer, F ¼
ð1� �Þ=ðDþ �� 1Þ is an order one constant, D ¼ d=h0,
and � ¼ kair=kliq is the ratio of thermal conductivities.

Parameter values for the experiments in Fig. 1 reveal that
Dc * Oð107Þ and G�Oð10�14Þ, far beyond regimes of
instability previously investigated in which Dc�
Oð10�1–1Þ and G�Oð10�1–102Þ.

In this Letter, we investigate unexplored consequences
of this deformational instability for nanoscale films subject

to a very large transverse gradient. The governing geomet-
ric and dynamic parameter ranges are constrained by �2 ¼
ðh0=�TC

maxÞ2 � 1, �Re ! 0, �Re Pr ! 0, and G ! 0; i.e.,
gravitational stabilization is absent. The lateral scale for
the slender gap ratio � is set by �TC

max, the wavelength of the
maximally unstable mode (i.e., fastest growing mode)
obtained from linear stability analysis, which in experi-
ment corresponds to the average pillar spacing. Here, Pr ¼
�=� is the Prandtl number, G ¼ gh30=�� is the Galileo

number, Re ¼ uch0=� is the Reynolds number, uc is the
characteristic lateral flow speed set by thermocapillary
forces, g is the gravitational acceleration constant, � is
the polymer kinematic viscosity, and � is the polymer
thermal diffusivity, both evaluated at temperature T2.
These constraints establish the slender gap approximation
for momentum and thermal transfer [17] in the limit where
there is no hydrostatic restoring force.
Within this approximation, the differential equations for

momentum and energy conservation decouple completely
[18]. The energy equation reduces to a 1D steady state
process for thermal conduction across an air-polymer bi-
layer with an internal undulatory interface HðX; Y; 	Þ;
variation of the interfacial temperature with time arises
solely through displacement of this interface. The relevant
variables are normalized according to ðX; YÞ ¼
ðx=�TC

max; y=�
TC
maxÞ, Z¼ z=h0, H¼h=h0, �¼ðT�T1Þ=�T

where �T ¼ T2 � T1, 	 ¼ uct=L, P ¼ �h0p=
uc, and
� ¼ ��=
uc where t, p, and 
 ¼ 
ðT2Þ denote real
time, pressure, and melt viscosity. The continuity equa-
tion for incompressible flow yields the relevant scal-

ing for the velocity fields; namely, ~U ¼ ðU;V;WÞ ¼
ðu=uc; v=uc; w=�ucÞ. The boundary conditions for the ve-
locity and stress fields are the usual no-slip condition,
impenetrability at the solid surface Z ¼ 0, and a jump in
the normal and tangential stresses at Z ¼ HðX; Y; 	Þ. In the
slender gap approximation, these stress conditions reduce

to PZ¼H ¼ �Ca�1r2
sH and rs� ¼ �Mars�Z¼H, where

rs�Z¼H ¼ ��DrkH=½Dþ ð�� 1ÞH	�2, the thermal

Marangoni number Ma ¼ ��T�T=ð
ucÞ, the surface gra-
dient operator rs ! rk ¼ ð@=@X; @=@YÞ [19], and Ca ¼

uc=ð��3Þ. The kinematic boundary condition, dH=d	 ¼
WZ¼H, is then reexpressed to yield the 4th-order, nonlinear
equation for the evolution of the air-polymer interface [17]:

@H

@	
þrk 


�
�DMaH2

2½Dþ ð�� 1ÞH	2 rkH þ H3

3Ca
r3

kH
�
¼ 0:

(1)

In our simulations, uc was set by the choice that the inter-
facial thermocapillary stress and slope rkH equal unity,

i.e., ð@U=@ZÞZ¼H ¼ ð@�=@XÞ ¼ 1, such that uc ¼
ð4�Þ2��3=3
 [20]. With this choice, Ca¼ð4�Þ2=3
and Ma¼3�T�T=½ð4�Þ2��2	¼ ½Dþð��1Þ	2=ð�DÞ�
Oð10�1–101Þ. For the parameter values pertinent to experi-
ment, spatial gradients in H for times 	 & 1 are Oð1Þ;
consequently, the first term in Eq. (1) is Oð1Þ, the second
term is Oð100–101Þ, and the third term is Oð10�2Þ. The
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destabilizing thermocapillary term is thereforeOð102–103Þ
larger than the stabilizing capillary term, which is the
reason that pillarlike structures can form in this system.
A similar derivation leading to Eq. (1) yields the corre-
sponding equation for the acoustic phonon model [7]:

@H

@	
þrk 


� �Qð1� �ÞH3

3Ca½Dþ ð�� 1ÞH	2rkHþ H3

3Ca
r3

kH
�
¼ 0;

(2)

where �Q ¼ 2Qka�T=ðup��2Þ, Q is a phenomenological

reflectivity coefficient, up denotes the speed of sound in

polymer, and � ¼ h0=�
AP
max. The liquid flux in Eq. (1) due to

shear flow by thermocapillary forces is instead replaced in
Eq. (2) by a pressure driven flow due to acoustic phonons
reflecting from the film interfaces.

Conventional linear stability analysis yields the (dimen-
sional) wavelength for the maximally unstable mode cor-
responding to these different models, namely,

�TC
max ¼ 2�h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�h0

3�d�T�T

s �
d

h0
þ �� 1

�
(3)

versus

�AP
max ¼ 2�h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�up

Qð1� �Þka�T
s �

d

h0
þ �� 1

�
: (4)

These characteristic length scales can be directly com-
pared to the pillar spacings observed in experiment.
Linear stability also yields the dimensionless cutoff wave
number Kc below which all modes are unstable (discussed

further in the summary). For the TC model, KTC
c ¼

ð3=2MaCa�DÞ1=2=½Dþ ð�� 1Þ	. Solutions of Eq. (3)
shown in Fig. 2(a) contain no adjustable parameters.
While the functional dependence of Eq. (3) on d is in
good agreement with experiment, the TC model system-
atically overpredicts the average pillar spacing, in some
cases by as much as 35%–40%. To further test the depen-

dence of �TC
max on d, we performed a least-squares fit of the

experimental data to the form of Eq. (3), namely, C1d
1=2 þ

C2d
�1=2, as shown in Fig. 2(b). Superimposed on these

curves is also a least-squares fit to Eq. (4) with fitting
parameters Q ¼ 6:2 and up ¼ 1850 m=s [7]. We have

determined that several experimental factors may contrib-
ute to the offset observed in Fig. 2(a); here we focus on a
key issue involving the measured values of h0 in the
literature. Spin cast polymer films are prone to significant
solvent retention [21,22], typically eliminated by postan-
nealing for several hours in a vacuum oven at elevated
temperatures. Significant shrinkage in film thickness has
been reported based on ambient vapor pressure, time, and
temperature of the bake. In the experiments of Refs. [7–
9,23], there are no reports of film annealing following spin
casting, which would lead to overestimates of h0. Figure 3
indicates the strong dependence of �TC

max on h0 and d and a
sharp drop in the predicted wavelength for small values of
�T and h0. While smaller values of h0 due to film shrink-
age leads to very good agreement, we note that solvent
evaporation is assumed to occur prior to insertion in the
experimental assembly and therefore plays no role in pillar
formation.
To better understand this instability, we examined the

Lyapunov free energy [24,25] F ¼ R
Ldxdy for the evolv-

ing film where

L ¼ ðrkHÞ2 � 3�MaCa

D

�
H ln

�
H

1þ �H

�
þ lnð1þ �Þ

�

(5)

and � ¼ ð�� 1Þ=D. The first and second terms on the
right-hand side represent the capillary and thermocapil-
lary contributions, respectively. Finite element simulations
with periodic boundary conditions and 2nd order
Lagrangian shape functions for spatial discretization of
the film height were conducted. As shown in Fig. 4(a),
once 	 exceeds unity, film evolution enters the nonlinear
regime, as indicated by the steep drop in free energy due
to the overwhelming influence of thermocapillary forces.
The terminating points correspond to contact with the
upper plate. This instability is nonsaturating (i.e., no
steady state solution in contrast to Rayleigh-Bénard or
Bénard-Marangoni instabilities); pillars will simply con-
tinue to grow until contact with the upper plate. Shown in

∆

µ

∆oo
(  C)o(nm) (  C)o(nm)

(a) (b)

FIG. 2 (color online). (a) Experimental data from Refs. [6–
8,23]. Material constants, evaluated at the temperature T2 ¼
170 �C, were obtained from Refs. [27–30]. (b) Fitting coeffi-
cients are of the form [experiments A–D, C1ð103 �mÞ0:5,
C2ð0:1 �mÞ1:5]: [A, 0:353;�34:7], [B, 0:650;�64:6], [C,
0:379;�46:0], [D, 0:340;�30:7]. For the AP model, Q ¼ 6:2
and up ¼ 1850 m=s.

∆
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FIG. 3. Solutions of Eq. (3) for �T ¼ 11 �C and 46 �C.

PRL 103, 074501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

14 AUGUST 2009

074501-3



Fig. 4(b) are predictions of the time required for the fastest
growing pillars to contact the cooler plate. The TC curve
was obtained from Eq. (1); the AP curve is an estimate
based on the growth rate corresponding to Eq. (4) from
linear stability analysis. Our estimates in Fig. 4(b) also
indicate that the fastest growing nanopillars contact the
upper substrate within a few hours of formation, while the
experiments typically lasted overnight. Filaments bridging
both substrates might then undergo capillary or even the-
mocapillary migration toward narrower gaps within the
slight wedge geometry used in experiment (tilt �1 �m
per cm according to [23]). This secondary effect would
also lead to better agreement due to smaller measured
values of �TC

max. Much larger values of D ¼ d=h0 were
also investigated numerically. Evolution into the nonlinear
regime corresponding to much larger pillar amplitudes
generates in-plane hexagonal ordering, in agreement with
experimental observations [26].

In summary, we have shown that thermocapillary
stresses play a crucial if not dominant role in the formation
of pillar arrays in molten nanofilms subject to a large
transverse thermal gradient. The parameter range investi-
gated corresponds to an unexplored limit of deformational
instability in which destabilizing thermocapillary forces
far outweigh stabilization by capillary or gravitational
forces. The predominance of thermocapillary effects al-
lows the formation of elongated nanostructures. Our analy-
sis indicates that any Newtonian liquid subject to even
smaller thermal gradients will undergo pillar formation
for wave number disturbances K <Kc. However, techno-
logical demand for high resolution optical or other large
area arrays with very small feature sizes suggests use of
very large thermal gradients, smaller gap widths, and
smaller film thicknesses h0.
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FIG. 4. (a) Evolution of the Lyapunov free energy for the case
h0 ¼ 100 nm, d ¼ 285 nm, �T ¼ 46 �C. Real time conversion
t ¼ 2:28	 hours. Inset: Plot of HðX; Y; 	 ¼ 1:1025Þ from finite
element simulations of Eq. (1). (b) Time required, ttop, for fastest

growing pillars to contact upper wafer for parameter values
given in (a). For variation with h0, d ¼ 285 nm; for variation
with d, h0 ¼ 100 nm.
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