Thermocapillary actuation of liquid flow on chemically patterned surfaces

Anton A. Darhuber, Jeffrey M. Davis, and Sandra M. Troian
Microfluidic Research and Engineering Laboratory, Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544

Walter W. Reisner
Department of Physics, Princeton University, Princeton, New Jersey 08544

(Received 15 August 2002; accepted 30 January 2003; published 4 April 2003)

We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width \(w \), the applied thermal gradient \(|dT/dx| \) and the liquid volume \(V \) deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on \(w \), \(|dT/dx| \) and \(V \). In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies. © 2003 American Institute of Physics. [DOI: 10.1063/1.1562628]

I. INTRODUCTION

Various microfluidic systems are being developed to transport ultrasmall volumes of liquids through miniaturized network assemblies. Applications for these devices include species separation, DNA sequencing and combinatorial chemistry.\(^1\)\(^-\)\(^4\) The integration of fluidic networks with devices for performing chemical reactions, separations and sequencing into a single “lab-on-a-chip” provides a highly parallel platform for automated handling and analysis of small fluid volumes, thereby minimizing waste volume and reagent cost.

Different transport mechanisms have been utilized in microfluidic devices including pressure gradients,\(^5\) electrophoresis and electro-osmosis,\(^6\) electrohydrodynamics,\(^7\) magnetohydrodynamics,\(^8\)\(^,\)\(^9\) centrifugation,\(^10\) and thermocapillary pumping (TCP).\(^1\)\(^,\)\(^11\) The TCP technique uses heating elements exterior to a closed channel to modify the surface tension at one end of a liquid plug. The difference in temperature between the front and back ends generates a capillary pressure gradient for liquid propulsion. Electrophoresis and electro-osmosis can also induce chemical separation in ionic solutions during transport. The majority of these techniques move either continuous streams or discrete droplets within enclosed networks.

There are only a few studies which target microfluidic delivery on open surfaces. Electrowetting\(^12\)\(^,\)\(^13\) and dielectrophoresis\(^14\) have been used to move or dispense discrete droplets on glass substrates using voltages between 10 and 1000 V. In this paper, we consider the use of thermocapillary forces and chemically patterned substrates for moving continuous streams and droplets on an open surface. The chemical patterning, which consists of surface regions that either attract or repel the liquid, laterally confines the liquid flow to selected pathways. Temperature gradients \(\nabla T \) applied parallel to the solid surface induce thermocapillary stresses in the overlying liquid with subsequent flow from warm to cool regions of the solid. The chemical surface treatment defines all possible carrier pathways. The actual flow pathway is selected by activating electronically addressable thin film heaters. Programmable surface temperature maps therefore provide remote control over the direction, timing and flow rate on hydrophilic segments. The capability of manipulating liquid flow by tuning the local temperature provides a powerful and versatile approach to microfluidic delivery.

Advantages of this method of fluidic transport include no moving parts, low applied voltages and a wider spectrum of acceptable liquids. By contrast, electrokinetic techniques require strongly ionic liquids and high operating voltages. In addition, since the open architecture of the thermally driven device allows continuous contact of the liquid phase with the ambient gas phase, devices based on this concept can also be used as sensors and detectors for soluble gases, aerosols or airborne microscopic particles. Due to the high surface to volume ratio in such fluidic systems, the device is best suited to liquids of low volatility, although encapsulation can minimize evaporative losses during transport of moderately volatile samples.

In this article we present an experimental and theoretical study of the thermocapillary flow of continuous streams on hydrophilic microstripes subject to a constant thermal gradient. Linear temperature profiles are established by simultaneously heating and cooling opposite ends of a silicon substrate. Using this assembly, we study the dependence of the
flow speed on the stripe width \(w \), the applied thermal gradient \(|dT/dx| \) and the liquid volume \(V \) deposited on a reservoir pad. The lateral confinement of the flowing liquid to the microstripe causes a significant curvature of the liquid–air interface which contributes to the flow characteristics in ways not present in the thermocapillary flow of liquids on homogeneous surfaces. In fact, instabilities often observed in thermocapillary spreading15–17 are suppressed by the additional transverse curvature. We develop scaling relations for two limiting cases in which the ratio of the reservoir pressure to the shear stress applied to the liquid stream is either much smaller or larger than unity. In these limits, the rivulet speed shows power law dependency on \(w \), \(|dT/dx| \) and \(V \). Full numerical solutions of the flow speed as a function of downstream position, based on a lubrication model which includes thermocapillary stress, capillary forces and temperature dependent viscosity, show excellent agreement with experiment.

II. EXPERIMENTAL SETUP

Samples were prepared from \(n \)-type doped, \(\langle 100 \rangle \)-oriented silicon wafers with a nominal resistivity of 10–20 \(\Omega \) \text{cm} and thermal conductivity \(k_{Si} = 160 \) \text{W/mK} at room temperature.16 The samples were cleaned by immersion in acetone and isopropanol followed by a mixture of hydrogen peroxide (\(\text{H}_2\text{O}_2 \)) and sulfuric acid (\(\text{H}_2\text{SO}_4 \)) at \(T = 80 \) °C.

For electrical passivation, the silicon samples were first coated with 200 nm silicon nitride (\(\text{SiN}_x \)) and 200 nm silicon oxide (\(\text{SiO}_2 \)) using plasma enhanced chemical vapor deposition (PECVD) in a Plasmatherm 790 at \(T = 250 \) °C. The \(\text{SiN}_x \) layer was deposited with \(\text{N}_2 \), \(\text{NH}_3 \) and \(\text{SiH}_4 \) at gas flow rates of 150, 2 and 110 sccm, respectively, at a chamber pressure of 900 mTorr and a power setting of 20 W. Operating parameters for the \(\text{SiO}_2 \) deposition layer were 160 sccm of \(\text{N}_2\text{O} \) and 35 sccm of \(\text{SiH}_4 \) at a chamber pressure of 400 mTorr and a power setting of 25 W. The metal heating resistors were deposited with a Denton electron beam evaporator and a photolithographic lift-off procedure. After metal evaporation, the resistors were covered with a 700 nm thick layer of PECVD \(\text{SiO}_2 \) deposited with the same parameter settings as above.

The sample surface was subsequently made hydrophobic by treatment with a self-assembled monolayer of 1H-, 1H-, 2H-, 2H-perfluorooctyl-trichlorosilane (PFOTS, Fluka)19,20 and photolithography. This coating completely suppressed flow on the silanized regions for the liquids and the volumes used in this study. The monolayer thickness of about 3 nm is negligible on the scale of the film and flow geometry (\(\geq 10 \) \(\mu \)m). The substrate surface can therefore be regarded as flat but chemically heterogeneous. The hydrophilic pattern, as shown in Fig. 1(a), consisted of pairs of square reservoirs, 4.5 mm per side, connecting 26 mm long hydrophilic stripes ranging in width from 100–800 \(\mu \)m. The volumetric flow rates in this study were rather small given the minute geometric dimensions. The reservoir volume therefore remained essentially constant for the duration of an experiment. A schematic diagram of the flow geometry is shown in Fig. 1(b). An optical micrograph of a spreading rivulet is shown in Fig. 1(c)—a small portion of the square reservoir pad appears to the left.

The liquid used in this study was polydimethylsiloxane (PDMS, Fluka), a silicone oil with viscosity \(\mu = 20 \) \text{mPa s}, density \(\rho = 950 \) \text{kg/m}^3 and surface tension \(\gamma = 20.3 \) \text{mN/m} at 22 °C.21 The thermal coefficient \(d\gamma/dT \) is \(\approx -0.06 \) \text{mN/m·K}.22 Additional material constants are the specific heat capacity \(c_p = 1550 \) \text{J/kg·K} and the thermal conductivity \(k = 0.14 \) \text{W/m·K}. Shown in Fig. 2 are the surface tension and viscosity of PDMS as a function of temperature. While the thermal coefficient \(d\gamma/dT \) is essentially constant over the temperature range shown, the viscosity shows a nonlinear depen-
FIG. 3. The maximum temperature difference $T_{\text{hot}} - T_{\text{cold}}$ (i.e., the temperature difference between opposite sides of the substrate), as a function of the heater input power. These finite element simulations were calculated from the thickness (δ) averaged steady-state heat conduction equation in the presence of a constant volumetric heat source (representing the activated heating resistor) and a constant reference temperature T_{cold} (representing the heat sink provided by the cooled brass block). Convective and radiative heat loss were incorporated through a convective heat transfer coefficient $h_{\text{conv}} = 7.5$ W/m2 and a substrate thermal emissivity of 0.9, both of which provided only minor corrections to the thermal profile. The Si substrate thickness was $d_{\text{Si}} = 550 \mu$m.

Figure 3(c) shows results of the thermal distribution in the vicinity of the resistive heater at the stripe inlet. This distribution was computed from the width (δ) averaged heat conduction equation and the same boundary conditions as above. The local maximum in the surface temperature, which occurs directly above the resistive heater, gives rise to a slightly larger thermal gradient within a few hundred microns of the microstripe inlet.

Since the heating resistors did not span the entire (transverse) width of the sample [see the layout in Fig. 1(a)], the temperature gradient was slightly higher near the central portions of the sample than at the margins. The thermal gradients $|dT/dx|$ used in this study ranged from 0.1 to 1.1 K/mm and were determined by measuring the surface temperature at the reservoir inlet [see Fig. 1(a)] and above the brass block using an Omega iron–constantan thermocouple with a tip diameter of 130 μm. The error in the temperature measurements was estimated to be 0.4°C.

The liquid sample was manually deposited onto the diamond-shaped reservoirs using a Hamilton digital syringe with a resolution of 0.1 μL. The uncertainty in the metered volume V was about ±0.15 μL. The liquid volume was deposited after the substrate had thermally equilibrated as monitored by the electrical resistance of the heating wire. The advancing position of the liquid front was tracked by light interferometry using an Olympus BX-60 microscope equipped with a wavelength bandpass filter centered at $\lambda = 535$ nm.

The experimental uncertainties in the determination of the front position and speed were estimated to be ±20 μm and 1%. The relative position of the resistive heater relative to the stripe inlet for different samples was found to affect the front speed by several percent. The relative orientation of these two patterns is set during sample manufacture in the lithography step that defines the hydrophilic patterns. The manual alignment precision using masks printed with a high-resolution image setter was about 250 μm.

III. THEORETICAL DESCRIPTION

The surface tension of a liquid decreases in almost linear fashion with increasing temperature from the melting to the boiling point. Variations in temperature along a direction x can therefore be used to generate a shear stress $\tau = d\gamma/dx = (d\gamma/dT)(dT/dx)$ at an air–liquid interface, which in-
duces flow from warmer to cooler regions.24 In what follows, it is assumed that the temperature of the air–liquid interface is equal to the substrate temperature and that the thermal gradient is constant and parallel to the microstripe. Typical values for the Peclet and Biot numbers are $Pe = U h \rho c_p / k_{liquid} = 0.05$ and $Bi = h_{conv} h / k_{liquid} = 0.003$ for a characteristic flow speed $U \approx 100 \mu m/s$, a heat coefficient $h_{conv} = 7.5 \text{ W/m}^2\text{K}$ for natural convection, and film height $h \approx 50 \mu m$. These values indicate that vertical temperature variations within the liquid film can be ignored.

A. Thermocapillary flow on homogeneous substrates

Levich24 first established the hydrodynamic equations describing thermocapillary motion in thin liquid films. For sufficiently thin and flat films (i.e., vanishing Bond and capillary numbers) subject to a constant stress τ, the average flow speed is given by $U = h \tau / 2 \mu$. Ludviksson and Lightfoot25 later examined the climbing of a liquid film along a vertical substrate whose heated end was immersed in a pool of completely wetting liquid. Interferometric measurements of the steady state film profiles showed good agreement with their theoretical model for all but the thinnest films.26 More recently, Carles and Cazabat27 and Fanton \textit{et al.}28 have focused on the role of the meniscus curvature (where the climbing film merges with the liquid bath) in determining the entry film thickness.

The scaling laws governing the entrained film thickness in the nonisothermal case can be obtained by analogy with the Landau–Levich dipping-coating problem29 for which $h \sim l \sqrt{\gamma / \rho g}$ is the capillary length and $Ca = \mu U / \gamma$ is the capillary number. Substituting $U = h \tau / 2 \mu$ for the coating speed, Carles \textit{et al.} and Fanton \textit{et al.} showed that the asymptotic film thickness away from the meniscus scales as $h \sim l \sqrt{\tau^2 / \gamma^2}$. The flow velocity therefore scales as $U \sim l \tau^2 / \mu \gamma^2$, which is a strong function of the applied shear stress. For higher thermal gradients and correspondingly thicker films where gravitational drainage is significant, the characteristic flow speed instead scales as $U \sim \tau^2 / \rho g$.

It has been shown in a number of studies15–17,25 that thin liquid films spreading on a non-isothermal substrate develop a capillary ridge near the contact line. This ridge undergoes a fingering instability like that observed in films flowing down an inclined plane30,31 and centrifugally driven films.32,33 For thermocapillary spreading, the wavelength associated with the most unstable mode is given by $\Lambda = 18 h / (3 Ca)^{1/3}$ provided the surface is smooth, homogeneous and completely wetted by the liquid.

B. Thermocapillary flow on hydrophilic stripes

The study of driven flows on chemically heterogeneous substrates is relatively new. Recent interest has focused on systems in which there exist two competing wavelengths—one established by the hydrodynamic forces, the other established by the feature size of the substrate pattern. For example, by templating a silicon surface with hydrophobic microstripes consisting of a self-assembled monolayer of octadecyltrichlorosilane (OTS), one can impose an “external” wavelength on thermocapillary driven flow.34 Studies on such patterned substrates have revealed undulations at the moving front whose wavelength matches that of the underlying stripe pattern for stripe widths $w > 50 \mu m$. Below this width, the wavelength of the liquid front reverts back to the value consistent with the most unstable hydrodynamic mode obtained with chemically homogeneous surfaces. These experiments also showed that the thermocapillary flow was slower on the OTS treated stripes. The OTS coated regions did not prevent liquid migration altogether as required for the present study.

In all previous studies of thermocapillary spreading, the spatial dependence of the viscosity has been neglected since the extent of spreading was normally much less than a centimeter. In what follows, the distances traversed are several centimeters. The variation in viscosity with distance is therefore included in the numerical simulations. Polynomial fits to the data shown in Fig. 2 are given in Ref. 35.

In this section we derive the lubrication equations for the flow speed and film height of a Newtonian liquid on a hydrophilic microstripe subject to a constant longitudinal thermal gradient. Similar equations have been derived for the spreading of a rivulet down an inclined, chemically homogeneous substrate, including the presence of a contact line at the moving front.36,37 We approximate the flow as unidirectional; deviations to this approximation caused by the junction between the diamond shaped reservoir and the narrow hydrophilic stripe are ignored. The equations are derived in the limit of small Ca and vanishing Bond number $Bo = \rho g w^2 / \gamma$. Figure 1(b) depicts a close-up of the flow geometry. The x-axis coincides with the stripe center, the y-coordinate spans the width of the stripe $[-w/2, +w/2]$, and the z-axis lies normal to the substrate surface. The variable $h(x,t)$ denotes the film thickness along the stripe centerline axis. With these approximations, the Navier–Stokes equations reduce to

\begin{equation}
\frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial z^2},
\end{equation}

\begin{equation}
\frac{\partial p}{\partial y} = \mu \frac{\partial^2 v}{\partial z^2},
\end{equation}

\begin{equation}
\frac{\partial p}{\partial z} = 0,
\end{equation}

where u and v denote the streamwise and transverse velocity fields, respectively. The boundary conditions for these equations are

\begin{equation}
u(x,y,0) = 0,
\end{equation}

\begin{equation}
u(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}u(x,y,0) = 0,
\end{equation}

\begin{equation}v(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}w(x,y,0) = 0,
\end{equation}

\begin{equation}\mu \frac{\partial u}{\partial z} (z=h) = \tau,
\end{equation}

\begin{equation}\mu \frac{\partial v}{\partial z} (z=h) = 0,
\[p(x,y,z=h) = -\gamma \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right). \] (8)

These conditions reflect the no-slip condition at the liquid–solid interface and a constant streamwise shear stress \(\tau \) at the air–liquid interface. The expression for the capillary pressure \(p \) assumes interfacial shapes with small slope. The streamwise and transverse velocity fields are then given by

\[u(x,y,z) = \frac{1}{\mu} \left[\frac{\partial p}{\partial x} \left(\frac{z^2}{2} - zh(x,y) \right) + \tau_x \right], \] (9)

\[v(x,y,z) = \frac{1}{\mu} \left[\frac{\partial p}{\partial y} \left(\frac{z^2}{2} - zh(x,y) \right) \right], \] (10)

where \(\mu \) depends on position because of the temperature variation along the liquid–solid interface. The kinematic condition, which requires \(dh/dt \) to equal the surface flow speed normal to the air–liquid interface, leads to the evolution equation for the film thickness,

\[\frac{\partial h}{\partial t} + \nabla \cdot \mathbf{Q} = 0, \] (11)

where \(\mathbf{Q} = (Q_x, Q_y) \) is a vector representing the volumetric flow rate per unit width. Away from the liquid inlet and spreading front, the flow field is essentially unidirectional and \(Q_y = 0 \). Within the lubrication approximation, this implies that \(\partial p/\partial y = 0 \). For microstreams whose length far exceeds the width, \(\partial / \partial y(\partial^2 h/\partial x^2) \ll \partial / \partial y(\partial^2 h/\partial y^2) \). This condition therefore defines an interfacial shape with constant transverse curvature, namely \(h(x,y,t) = h_c(x,t)(1 - 4y^2/w^2) \). Numerical simulations not assuming this parabolic profile show hardly any deviations from results obtained with this simplified form.

Substituting the flow rate,

\[Q_c(x,y,t) = \int_0^h u(x,y,z,t) \, dz, \] (12)

into Eq. (11) yields

\[\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left[\frac{\tau h^2}{2\mu} + \frac{h^3}{3\mu} \frac{\partial}{\partial x} (\gamma \nabla^2 h) \right] = 0. \] (13)

Integration of this expression with respect to \(y \) using \(h(x,y,t) = h_c(x,t)(1 - 4y^2/w^2) \) yields the equation for the centerline height (the subscript \(c \) is omitted henceforth),

\[\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left[\frac{2\tau h^2}{5\mu} + \frac{64h^3}{315\mu} \frac{\partial}{\partial x} (\gamma h_{xx}) - \frac{64h^3}{35w^2\mu} \frac{\partial}{\partial x} (\gamma h) \right] = 0. \] (14)

The surface tension and viscosity are both position dependent due to the presence of the thermal gradient as shown in Fig. 2.

Equation (14) is nondimensionalized by introducing the following variables:

\[\tilde{h} = \frac{h}{h_0}, \quad \xi = \frac{x}{l_c}, \quad \bar{t} = \frac{tU_c}{l_c}, \quad \bar{\gamma} = \frac{\gamma}{\gamma_0} \quad \text{and} \quad \bar{\mu} = \frac{\mu}{\mu_0}. \] (15)

where \(h_0, \gamma_0 \) and \(\mu_0 \) denote the centerline height, the surface tension and the viscosity of the liquid film at the inlet position \(x = 0 \). The characteristic flow speed set by the thermocapillary forces is given by

\[U_c = \frac{2h_0\tau}{5\mu_0}. \] (16)

The characteristic length scale in the streamwise direction, chosen to reflect the balance between capillary and thermocapillary forces, is set by

\[l_c = \sqrt{\frac{h_0^3}{3\mathcal{C}_a}}, \] (17)

where \(\mathcal{C}_a = \mu_0 U_c / \gamma_0 \). This dynamic length scale is the same as that previously used in studies of thermocapillary flow \(^{26,38}\) and gravitationally driven flow on homogeneous surfaces. \(^{39}\)

The final equation governing liquid flow on the heated channel becomes

\[\frac{\partial \tilde{h}}{\partial \bar{t}} + \frac{\partial}{\partial \xi} \left[\frac{\tilde{h}^2}{\mu} \frac{\partial}{\partial \xi} \left(\frac{\gamma^2 \tilde{h}}{\mu} \right) \right] - \frac{192}{35} \mathcal{N}_D \frac{\partial}{\partial \xi} \left[\frac{\tilde{h}^3}{\mu} \frac{\partial}{\partial \xi} (\bar{\gamma} \tilde{h}) \right] = 0, \] (18)

where the parameter \(\mathcal{N}_D = (l_c/w)^2 \) represents the square of the ratio of the dynamic length scale \(l_c \) and the geometric length scale \(w \).

The third term in Eq. (18) defines the contribution to the flow rate stemming from the variation in longitudinal surface curvature (i.e., along the \(\xi \)-axis). The influence of this capillary term has been studied extensively in the context of the spreading of isothermal rivulets. \(^{40}\) The term proportional to \(\mathcal{N}_D \) defines the capillary contribution from streamwise variation in the transverse surface curvature due to the liquid confinement by the chemical patterning. This term only involves the first derivative of the film height since the liquid cross-sectional shape is assumed to be a parabola. The influence of this term on the spreading of isothermal rivulets on hydrophilic microstripes has already been investigated. \(^{41}\) Depending on the detailed shape of the liquid film entering the microstripe, this term can either increase or decrease the initial spreading speed.

Equation (18) requires the specification of four boundary conditions and an initial condition. These are chosen to be \(\tilde{h}(\xi=0,t) = 1, \partial \tilde{h}/\partial \xi(0,t) = 0, \tilde{h}(\xi_a,t) = b = 1/200 \) and \(\partial \tilde{h}/\partial \xi(\xi_a,t) = 0 \), where \(\xi_a \) is the rightmost boundary of the computational domain \([0, \xi_a] \). The limiting film thickness \(b \), which represents a flat precursor film ahead of the contact line, eliminates the stress singularity in problems with a moving contact line. \(^{40}\) A detailed discussion of contact line models and their effect on the film profile and dynamical contact and angles can be found in Refs. 38, 42, and 43.

The initial condition for the film shape at \(\bar{t} = 0 \) is given by \(\tilde{h}(\xi,0) = [(1 + b) - (1 - b) \tanh(\xi - \xi_0)]/2 \), where \(\xi_0 \) denotes the inlet position. The boundary conditions at \(\xi = 0 \) predicate a constant and flat inlet height. In practice, the capillary and hydrostatic pressure exerted by the liquid
For long rivulet extensions $\xi \gg 1$, the capillary contributions in Eq. (14) scale as $e^2 h$ and $e h (h/w)^2$ ($e = h/L \ll 1$), whereas the thermocapillary term scales as h^2. In this limit, the flux is dominated by the thermocapillary term. In steady state, the flux is a constant, leading to the equality $\bar{h}^2/\bar{\mu} = 1$. Approximating the viscosity by the linear function $\mu(T(\xi)) = (1 + a \xi)$ dictates a centerline profile of the form $\bar{h}(\xi) = \sqrt{1 + a \xi}$. Consequently the average flow speed is given by

$$\bar{u}(\xi) = \frac{5}{4} \frac{1}{\sqrt{1 + a \xi}},$$

(19)

where $\bar{u}(\xi) = u(x)/U_c$. The increase in viscosity near the cooler edge causes a slowdown in speed but an increase in film height such that the overall flow rate remains constant.

C. Scaling relations

Determination of the actual value of the inlet height h_0 as a function of w, τ and V requires a full asymptotic matching of the reservoir region to the channel dynamics. There are two limiting cases, however, in which scaling relations can be easily derived, namely when h_0 is controlled by the capillary and/or hydrostatic pressure on the reservoir or by the thermocapillary stress along the microstripe.

For small thermal gradients and large reservoir volumes, the inlet height h_0 is dominated by the reservoir pressure. The inlet height for isothermal spreading scales as $h_0 \sim w^2 V$. Substituting this relation into Eq. (16) gives $U_c \sim w^2 V/\tau \mu_0$. In this limit, the flow speed scales quadratically with the stripe width and linearly with the reservoir volume and applied thermal gradient.

For large thermal gradients and small reservoir volumes, the inlet height is governed by the thermocapillary stress along the microstripe. In a separate study of Newtonian liquids entrained at constant speed on hydrophilic microstripes, it was shown that the presence of significant transverse curvature strongly modifies Landau’s original relation between the film thickness and capillary number (described in Sec. III A). In particular, $h_0 \sim w C\alpha^{1/3}$. Substituting this dependence into Eq. (16) predicts that $U_c \sim w^{3/2} C^{1/2} (\mu_0 \alpha)^{1/2}$. In either case, the dependence of the flow speed on the applied stress τ is significantly weaker than that derived for vertically climbing films on homogeneous substrates.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 5 shows results of the rivulet front speed as a function of downstream position x for four different settings of the thermal gradient. The data were obtained with microstripe widths ranging from 200 to 700 μm. As expected, the flow is faster for larger values of $|dT/dx|$ and wider stripes. The speed was obtained by tracking the position of the first dark interference fringe. This fringe does not exactly correspond to the position of the contact line but is the closest marker to the front that can be measured reliably. In these experiments, the heating electrode and the cooling brass
block were separated by a fixed distance of 28.4 mm. The shear stress induced in the liquid film ranged from 0.012 to 0.058 Pa. The dashed lines shown in the figure represent constant flow rate solutions according to Eq. 19. The solid lines represent the flow speed extracted from the full numerical solution to Eq. 18. The agreement between the measured data and the numerical solutions is generally excellent. Except for the largest gradient used, the measured speed decreases monotonically with increasing distance. This decrease is due to three factors, namely the increase in liquid viscosity with decreasing temperature, the capillary contributions to the flow that diminish with increasing distance according to Eq. 14 and the slight depletion in reservoir volume with time. The flow speed in Fig. 5 shows an initial increase in speed which persists several millimeters from the inlet. This increase is suggested by the heat transfer simulations shown in Fig. 3 where the finite heater width and substrate thickness cause a local maximum in the surface temperature. Close to the inlet, the thermal gradient caused by this local maximum opposes the flow into the channel over a very short distance.

The dependence of the flow speed u on the liquid reser-
The dependence of flow speed on \(\frac{\Delta V}{\Delta x} \) was also investigated. Figure 6(a) shows the front speed \(u \) as a function of \(x \) for \(w = 700 \mu m \) using sample volumes ranging from 3 to 8 \(\mu l \). Smaller volumes and narrower stripes produce slower spreading. As the volume is reduced from 8 to 3 \(\mu l \), the speed no longer decreases monotonically but exhibits the same initial acceleration as observed in Fig. 5(d). Figure 6(b) shows the volume dependence of the front speed for a 20 mm long rivulet on stripe widths \(w = 300, 500 \) and 700 \(\mu m \). The dependence of speed on sample volume is essentially linear, consistent with the prediction in Sec. III C.

Figure 7 illustrates the dependence of flow speed at the fixed location \(x = 20 \) mm on the magnitude of the thermal gradient. The data are fitted by a relation of the form \(u \sim |dT/dx|^\beta \) where \(\beta = 1.0 \) for the larger sample volume (8.0 \(\mu l \)) and \(\beta = 1.47 \) for the smaller volume (2.5 \(\mu l \)). The data for 8.0 \(\mu l \) and \(w = 300 \mu m \) show a transition to larger exponents at \(|dT/dx| > 1 \) K/mm. The reduction in liquid volume changes the exponent from 1 to 3/2. In a previous study of isothermal spreading on hydrophilic microstripes, it was shown that the front speed strongly depends on the sample volume.41 In particular, the speed of a PDMS sample deposited on a 4.5 mm square reservoir was found to scale as \(V^{2.82} \). Consequently, reducing the volume from 8 to 2.5 \(\mu l \) diminishes the pressure exerted at the inlet by a factor of about 25. This decrease in inlet pressure biases the system toward the thermocapillary limit, as described in Sec. III C, for which \(u \sim |dT/dx|^{3/2} \). The two limiting exponents observed in the experimental data are in good agreement with these scaling predictions and capture the transition between an inlet height dominated by the reservoir pressure and shear dominated flow.

The dependence of flow speed on \(w \) for two different sample volumes is shown in Fig. 8. The data shown in Fig. 8(a) were extracted from Fig. 5 at a location \(x = 18 \) mm. The rivulet is then sufficiently long for the thermocapillary stress to dominate the flow. The flow speeds can be fitted by the functional form \(u \sim w^\alpha \), where \(\alpha \) is found to vary with the magnitude of the applied thermal gradient. The exponent \(\alpha \) decreases systematically from a value of 2 at low gradients and high volumes to about 1.5 for high gradients and smaller reservoir volumes. These limiting values are again in good agreement with the scaling predictions in the preceding section.

The fastest spreading speed we have measured to date is 600 \(\mu m/s \) using a lower viscosity PDMS oil (5 cSt) on an 800 \(\mu m \) wide stripe with an applied gradient of \(|dT/dx| = 1.44 \) K/mm and a liquid volume of 8 \(\mu l \). Faster speeds can be obtained with liquids of smaller viscosity and larger \(d\gamma/dT \). Narrower and continuously fed reservoirs will also increase the inlet film height such that speeds in excess of 1 \(mm/s \) appear accessible.
V. SUMMARY

We have studied thermocapillary flow generated by a constant thermal gradient along hydrophilic microstripes ranging in width from 100 to 800 \(\mu m \). The microstripes are lithographically defined on a silanized silicon surface. The flow speed was measured as a function of the stripe width \(w \), the applied thermal gradient \(|dT/dx| \) and the volume \(V \) of liquid deposited on a terminal reservoir. Numerical solutions of the governing lubrication equations, including capillary effects due to the lateral confinement of the flowing liquid and the streamwise increase in viscosity, show excellent agreement with experimental results. In the limiting cases where the inlet film thickness is either dominated by the capillary and/or hydrostatic pressure at the terminal reservoir (small \(|dT/dx| \) and large \(V \)) or by the thermocapillary stress along the microstripe (large \(|dT/dx| \) and small \(V \)), the front speed scales as \(\frac{w}{\mu} |dT/dx|^\beta \). When the inlet height is dynamically controlled by the thermal stress, \(\alpha \) and \(\beta \) both approach 3/2; when the inlet height is controlled by the reservoir pressure, \(\alpha \rightarrow 2 \) and \(\beta \rightarrow 1 \). The experimental data fall within these predicted values. Moreover, for long rivulet extensions, the capillary forces due to streamwise curvature become negligible and the liquid flow asymptotes to a constant value.

In this study we demonstrate that thermocapillary stresses provide a suitable means for routing liquid microstreams along lithographically defined pathways. An extension of this prototype assembly to a platform with electronically addressable microheater arrays, which allows for active control of flow speed, direction and timing, is currently being developed. With flow speeds of order 1 mm/s within reach, thermocapillary flow on patterned substrates holds promise for emerging applications in microfluidic delivery and transport.

ACKNOWLEDGMENTS

This work was supported by NSF-CTS-0088774, NSF-DMR-9809483, NSF-DMR-0213706 and US Army ARDEC DAAE30-02-C-1141. J.M.D. gratefully acknowledges a NDSEG fellowship.

35 Polygonal fitting to the viscosity and surface tension data shown in Fig. 2 were extracted to be \(\mu(T) \) [mPa s] = \(27.6755 \pm 0.3597 \times 10^{-5} \) T + 8.882 \times 10^{-3} \) T and \(\gamma(T) \) [mN m] = \(21.5 \pm 0.067 \) T, where \(\gamma \) is in degrees Celsius.

Downloaded 28 Oct 2008 to 131.215.237.157. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp