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For decades, researchers have been exploring pattern-forming instabilities in free surface thin films in
the hope of developing alternative lithographic techniques for applications only requiring resolution limits
in the submicron range. Previous studies have shown how the pitch and shape of elements in an array
can be varied by adjusting the magnitude of surface forces and growth time prior to solidification in situ.
Since the formations emerge naturally from an initial flat molten film, the final arrays exhibit ultrasmooth
interfaces and are therefore ideally suited to beam-shaping applications such as thin-film micro-optics.
Progress in this field has stalled, however, due to the very nature of the formation process. Even when
great care is taken to ensure that initial films are defect-free, final arrays still exhibit unacceptable variabil-
ity in pitch, shape, and height due to ubiquitous sources of noise responsible for instability and growth.
In this work, we focus on a thermocapillary instability in slender molten films exposed to a very large
thermal gradient. We begin with a discussion and demonstration of why this instability inextricably leads
to highly disordered arrays even if initialized by a film with very small amplitude surface roughness. We
then demonstrate how spatially periodic modulation of the thermal field, implemented in three different
ways, can induce synchronous growth of highly uniform periodic arrays despite noisy initial conditions.
Results based on linear and weakly nonlinear stability analysis, Bloch wave analysis, and direct numer-
ical simulation of the interface equation reveal how resonant wavelength excitations occurring between
the modulation and instability driving fields are responsible for such rapid and coherent growth. An addi-
tional benefit is that the modulation field can be selected to yield an array pitch much smaller than in
unmodulated systems.
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I. INTRODUCTION

The field of thin-film micro-optics continues to grow
rapidly, spurred by advances in thin-film technology cou-
pled with unconventional lithographic techniques. Of spe-
cial interest are thin and flexible patterned films for
spatiotemporal beam shaping that can be easily integrated
into small devices requiring no more than micron or sub-
micron resolution. Free space micro-optical systems rely
heavily on microlenslike films whose elements consist
of refractive, reflective, diffractive, compound, or hybrid
elements [1–4]. While some arrays are fabricated exclu-
sively from hard material such as silicon or semiconduc-
tors, many are also being fabricated from polymeric films,
which are easy to process and offer mechanical flexibil-
ity and compliancy. Polymeric films have demonstrated
excellent optical performance in image focusing and mag-
nification, image relay, collimation, filtering, low disper-
sion, and multispectral capability. It is anticipated that
similarly patterned planar, curved, and three-dimensional
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(3D) thin-film arrays will also prove useful to microfluidic,
biomimetic, and metamaterial devices and sensors given
they can be assembled into compact structures involving
coherent coupling of multiple optical channels.

A. Motivation

In recent years, researchers have been investigating the
possibility of fabricating micro-optical arrays by contact-
free lithographic techniques that rely on hydrodynamic
instabilities in ultrathin polymer films [5–8]. For suf-
ficiently large driving fields, such instabilities can be
made to generate 3D periodic formations with small or
large aspect ratios. Detailed knowledge of the physical
mechanism leading to instability allows the user to tune
the pitch (i.e., feature or element separation distance)
and peak height of the patterned arrays. The three thin-
film instabilities that have garnered the most attention
in this regard arise from the competition between cap-
illary forces and either thermocapillary, electrohydrody-
namic, or van der Waals forces. Once the desired periodic
formations are attained, the molten films are solidified

2331-7019/22/18(6)/064090(26) 064090-1 © 2022 American Physical Society

https://orcid.org/0000-0003-0112-4139
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.18.064090&domain=pdf&date_stamp=2022-12-29
http://dx.doi.org/10.1103/PhysRevApplied.18.064090


YI HUA CHANG and SANDRA M. TROIAN PHYS. REV. APPLIED 18, 064090 (2022)

rapidly in situ by dropping the temperature of the sup-
porting substrate (typically silicon, quartz, or sapphire)
below the polymer glass transition temperature. A signif-
icant advantage in using such methods to pattern films
is that the final structures exhibit ultrasmooth interfaces
because they are formed directly from a melt. By contrast,
films patterned by conventional photolithographic meth-
ods tend to exhibit roughened interfaces due to aggres-
sive etching processes required for delineating pattern
shapes.

Early studies devoted to exploring hydrodynamic insta-
bilities for lithographic purposes focused on the fact that
films whose thickness ranges from tens of nanometers
to several microns exhibit very large surface-to-volume
ratios. As a result, it was anticipated that utilization of
very large surface forces could provide an especially effec-
tive means by which to corral fluid initially distributed
in two dimensions into three-dimensional shapes. Polymer
melts of poly(methyl methacrylate), polystyrene, and poly-
carbonate were found to be especially amenable to such
patterning methods while offering excellent optical perfor-
mance. Since the surface tension of molten polymeric films
is relatively small, capillary leveling is more easily over-
come in such systems, allowing formation of even complex
3D liquid shapes.

Despite the enormous potential for design and fabri-
cation of thin-film arrays by such unconventional pro-
cesses, the field has stalled because of persistent problems
with unacceptable variation in array pitch, shape, and
height—especially problematic for optical devices that
tend to have rather stringent requirements. Ironically, the
very source responsible for such pattern-forming fluid
instabilities—namely, ambient noise—is also responsible
for the actual failure of this approach. As discussed in
Sec. II, the surface forces responsible for self-organization
of fluid spontaneously give rise to a runaway mechanism
whereby relatively thicker regions of the film grow ever
more rapidly than thinner regions. Therefore, even very
small variations in initial film thickness grow rapidly to
generate significant nonuniformity in pitch, shape, and
height. Despite the seeming elegance of an approach that
relies on a fluid instability to generate large area patterning,
ubiquitous sources of noise ultimately cause nonunifor-
mities that persist and amplify in time. It is therefore not
possible to fabricate highly uniform periodic arrays with-
out invoking some way of suppressing or overcoming this
fundamental shortcoming.

In this paper, we focus on thermocapillary patterning of
thin liquid films and demonstrate how the phenomenon of
resonant wavelength excitation, here induced by spatially
periodic modulation of the thermal field, can lead to rapid
and synchronous formation of highly uniform periodic
arrays. The array pitch enforced by this modulation can
also be selected to be much smaller than values obtained
in comparable unmodulated systems.

B. Organization of paper

The analysis presented in this work is organized as
follows. Section II offers background and perspective rel-
evant to the lithographic problem under study. Section III
discusses various aspects of the general form of the thin-
film equation for thermocapillary-driven flow in free sur-
face films with arbitrary variation in temperature along
the gas-liquid interface. Linear stability analysis of this
so-called unmodulated system (i.e., flat solid boundaries
maintained at constant separation and temperature differ-
ence) establishes important relations governing the wave-
length and growth rate of the fastest growing mode. The
expression for the critical wave number Kc defining the
point of neutral stability is key to subsequent analysis.
Section IV describes various aspects of the resonant wave-
length analysis based on linear and weakly nonlinear film
behavior induced by small amplitude, spatially periodic
modulation of the thermal field. Section V outlines details
of a Bloch wave analysis examining the stability of small
amplitude equilibrium periodic states with K = Kext that
can form under certain conditions. Among other findings,
the analysis yields an important expression for the crit-
ical modulation amplitude required to deform an initial
liquid film into a uniform periodic array for a given ratio
R = Kext/Kc.

Sections VI and VII respectively outline the numerical
model and metrics used to quantify the dynamical behav-
ior along with discussion of the results of direct numerical
simulation for three types of modulation proposed. These
results capture the dynamical behavior ranging from small
(linear) to large (nonlinear) amplitude patterning of an
initial flat liquid layer marked by a small degree of sur-
face roughness modeled as white Gaussian noise. Behavior
describing small amplitude arrays confirms the predictions
in Secs. IV and V. Behavior for larger amplitude arrays
offers additional insight into wave interference effects
between the modes and higher harmonics triggered by the
modulation and fundamental instability. Section VIII offers
summary perspectives and concluding remarks.

II. THERMOCAPILLARY LITHOGRAPHY:
CHALLENGES AND A WAY FORWARD

A. Early studies of thin-film instability and growth
driven by large thermal gradients

Over two decades ago, Schäffer and coworkers [9–12]
reported observation of localized arrays of micropro-
trusions in an initially flat molten polymeric nanofilm
exposed to a large temperature gradient. They proposed
that these formations develop in response to a long-
wavelength instability due to gradients in acoustic phonon
radiation pressure within the film. The supporting analysis
was based on a system geometry in which a slender liquid
film supported on a flat hot substrate is situated in close
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proximity to a flat and parallel cold substrate. The analysis
required that the temperature field vary only along the axis
normal to the parallel substrates. For several reasons how-
ever, their experimental measurements and results turned
out to be difficult to interpret. For example, the actual
experimental setup consisted of a tilted plate geometry in
which the two solid substrates maintained at a constant
temperature differential were positioned at an angle to each
other, thereby generating both vertical and horizontal ther-
mal gradients. The horizontal thermal gradient, even if
small, altered the peak amplitudes, growth rates, and pitch,
making direct comparison to the theoretical model some-
what questionable. The emerging fluid protrusions were
also allowed to grow until full contact with the cold sub-
strate was achieved. Fluid reorganization and solidification
upon contact with the cold substrate likely further altered
the patterns due to physical effects not incorporated into the
model. Additionally, while the predictions of the linear sta-
bility model are strictly predicated on early time growth to
ensure only small amplitude deformation of an initial flat
film, the measurements were taken at the final time once
peak heights had contacted the opposing cold substrate.

Some years later, a different mechanism was proposed
based on a long-wavelength thermocapillary instability
[13–15]. Experiments [16–18] designed to better accord
with key assumptions of that model were also conducted.
Detailed measurements of the array pitch and peak growth
rates at early times were found to be in good agreement
with predictions of a linear stability analysis describ-
ing the competition between destabilizing thermocapillary
forces promoting growth of protrusions and stabilizing
capillary forces repressing formation of regions of high
interfacial curvature. More recent theoretical work exam-
ining late time dynamics in the nonlinear regime has also
demonstrated how fluid protrusions driven by significant
thermocapillary stresses will sharpen in time due to a self-
similar runaway process [19] that leads to cusplike shapes.
Runaway dynamics leading to self-similar shapes is also
known to occur in perfectly electrically conducting liquids
subjected to strong electric field gradients [20,21].

The original thermocapillary model [13–15], to which
we refer as the unmodulated system and reviewed in
Sec. III, describes the configuration in which a gas-liquid
bilayer is confined between two flat boundaries held at a
constant separation distance and temperature differential.
Experimental studies [16–18] testing predictions of that
model utilized the design in Fig. 1(a). There, a molten
polymeric nanofilm supported on a warmer silicon sub-
strate was situated in close proximity (a few microns or
less) to a transparent cylindrical disk (SU-8) attached to
a colder cylindrical sapphire flat. The disk helped define
a spatial region within which the vertical temperature
gradient could be made quite large and more accurately
controlled either by using thicker disks or thicker liq-
uid films or thinner air gaps. The resulting large thermal

gradient was observed to trigger formation of multiple pro-
trusions inspected directly by interference microscopy. In
this way, spatiotemporal measurements of the distribution
of peak heights, pitch, and growth rates were accurately
obtained. Because thermocapillary flow in a single com-
ponent fluid always draws liquid toward cooler regions
of the gas-liquid interface, the taller protrusions whose
tips were closer to the cooler substrate always grew more
rapidly, a process leading to run away accelerated growth.
The ultimate goal of studies such as these was to identify
strategies for enforcing array formations with a prescribed
pitch, shape, and peak height. If successful, it was antici-
pated that such a method of film patterning by noncontact
means would be ideally suited to micro-optical applica-
tions because the protrusions emerge naturally within a
liquid melt and will therefore exhibit molecularly smooth
interfaces. This formation process contrasts sharply with
patterning by conventional photolithographic methods that
imbue films with highly roughened interfaces caused by
multiple chemical etching steps required to add or remove
material during film processing.

B. Failure of lithographic patterning based solely on
thermocapillary instability

Despite the seeming elegance of relying on an intrin-
sic hydrodynamic instability to generate periodic arrays,
there remain notable challenges. The first difficulty stems
from the very mechanism sustaining protrusion growth.
Since taller peaks always advance more rapidly toward
the cooler boundary, initial configurations marked by any
disparities in film thickness, however small, will rapidly
incur disparities in peak heights, shape, and pitch. Nonuni-
formities, such as in Fig. 1(b), are traceable to variations
in initial film thickness incurred either during initial film
preparation, deposition and annealing, or dewetting and
pooling events around spacers used to enforce a fixed
substrate separation distance or local film thickening dur-
ing growth caused by coalescence of adjacent protrusions
[16–18]. Unfortunately, experimental measurements have
been very difficult to carry out for a number of reasons,
including the fact that protrusion growth arising from
nucleation of such film defects can interfere significantly
with growth due to thermocapillary instability.

A second difficulty with thermocapillary lithography
based solely on instability is related to achieving a reduc-
tion in the array pitch. As will be shown in Sec. III, the
fastest growing wavelength in unmodulated systems is
known to scale inversely as �T−1/2

o where �To = T+ −
T− is the applied temperature differential [see Fig. 1(a)].
In order to generate a large vertical thermal gradient,
the parallel boundary substrates must be placed in very
close proximity (a few microns or less) so as to mini-
mize the separation distance do. Such proximity, however,
causes effective cooling of the warmer substrate that tends
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FIG. 1. (a) Unmodulated system for measurement of ther-
mocapillary instability and growth in nanoscale films [16–
18]. PID denotes the proportional integral derivative controller
used for maintaining a fixed temperature. ITO denotes a sur-
face layer of indium tin oxide. (b) Optical images showing
variation in surface reflectivity due to emergent fluid protru-
sions. Images demonstrate significant nonuniformity in pat-
tern pitch, shape, and height. High viscosity films, consisting
of high molecular weight polystyrene, are used to slow the
evolution process. (c) Scanning electron micrograph showing
a solidified square microlens array resulting from a spatially
periodically modulated thermal field enforced by a patterned
colder substrate. Here, an initial 150-nm polymer melt film
is exposed to an upper thin cold disk (SU-8) patterned by a
square array of cylindrical pins (SU-8, not shown) with pitch
50 µm, pin diameter 5 µm, and pin length 1.6 µm. Further details
are provided in Refs. [14,22].

to diminish the temperature difference �To. As a result,
experiments conducted so far have only achieved array
pitch values of the order of tens of microns, too large for
most micro-optical applications.

In preliminary experimental studies [22], it has been
shown that highly uniform square arrays can be gener-
ated with a colder substrate that is patterned with a square
array of long slender cylindrical pins. The microlens array
shown in Fig. 1(c), which was solidified in situ, was mea-
sured to have a pitch closely matching that of the colder
patterned substrate. The mystery resulting from those
experiments, which provided the motivation for this cur-
rent work, was that depending on the ratio R and the length
of the pins, the protrusions did not always align beneath the
colder pins nor always generate uniform arrays.

C. Resonant wavelength excitation phenomena in
hydrodynamic systems

For several decades now, researchers have been investi-
gating the phenomenon of resonant wavelength excitation
in nonequilibrium systems as a way to induce frequency
locking in the temporal domain. Wavelength locking in
the spatial domain—as described in our current work—has
also been studied but to a much lesser degree. This phe-
nomena has been explored in the context of the Rayleigh-
Bénard (RB) instability, known to occur in liquid layers
that are sufficiently thick for gravitational forces to play
a leading role. The RB instability, which induces den-
sity stratification in deep liquid layers heated from below,
can generate periodic arrays of counter-rotating convec-
tive cells once the critical Rayleigh number is exceeded.
In a seminal paper, Kelly and Pal [23] showed that, for
wavelengths equal to the critical wavelength for onset
of RB convection, the presence of small amplitude, spa-
tially periodic modulation of the shape or temperature field
of the boundary walls gives rise to resonant amplified
cellular convection for any value of the Rayleigh num-
ber. A number of theoretical [24,25] and experimental
studies [26,27], including references therein, have since
explored spatiotemporal resonant response in spatially
forced pattern-forming systems. These include, for exam-
ple, the Swift-Hohenberg model for RB convection and
the Lengyel-Epstein model for reaction diffusion kinetics
leading to Turing patterns.

Higgins [28] reported observation of potential resonant
wavelength excitation in a system involving dewetting of
a nanoscale film. The dewetting process was observed
to leave behind the receding front a periodic array of
droplets. The pattern formation was believed to be caused
by thermal fluctuations in the repulsive interaction between
the liquid and supporting solid, modeled by a van der
Waals interaction potential. The fluctuations were found
to generate liquid pinholes that expanded rapidly due to
the inertial-dominated dewetting process. The resulting
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patterns strongly resembled similar spatial configurations
seen in spinodal-like instabilities in binary fluids. Studies
have since shown that this similarity stems from a mathe-
matical similarity in the form of the equations governing
these two processes [29]. In practice, dewetting patterns
tend to exhibit significant nonuniformity in droplet peak
heights, shape, and pitch.

It was later revealed from a bifurcation and stability
analysis [30] describing thin-film dewetting from a sub-
strate prepatterned with wetting and nonwetting stripes that
sinusoidal modulation of the van der Waals interaction
potential on a length scale comparable to the original insta-
bility wavelength can lead to highly uniform accelerated
growth. This study shed light on an important feature of
resonant excitation response, namely that the modulation
immediately generates variations in film thickness equal
to the modulation wavelength. This initial rippled state
leads to an imperfect bifurcation that therefore expands the
region of instability about the critical wavelength set by the
unmodulated system. Apart from this one important study
however, there appears to our knowledge no other work
involving resonant wavelength excitation phenomena in
thin liquid films.

III. GENERAL EQUATION FOR
THERMOCAPILLARY GROWTH OF

PROTRUSIONS IN SLENDER LIQUID FILMS

In this paper, we explore the consequences of resonant
wavelength excitation in thin films prone to thermocapil-
lary instability. These excitations are triggered by a spa-
tially periodic modulated thermal field enforced in one of
three ways, as depicted in Fig. 2. In this section, we outline
the derivation leading to the general form of the thin-film
equation applicable to any system undergoing variation of
the temperature along the gas-liquid interface. We then
briefly review known results for the instability wavelength
and growth rate in unmodulated systems in order to estab-
lish some important relations such as the expression for the
critical wavelength Kc, a key parameter for the analysis of
modulated systems presented in Sec. IV and thereafter.

The general thin-film equation [15,31] relevant to this
study is predicated on a number of important approx-
imations listed here. It is assumed that the liquid flux
governing protrusion growth is dominated by large ther-
mocapillary and capillary forces, which far exceed any
contribution from gravitational leveling. The velocity and
pressure fields within the thin liquid film satisfy the long-
wavelength approximation in which the vertical length
scale is much smaller than the horizontal length scale—as
a result, the viscous forces are orders of magnitude larger
than inertial forces, which are neglected. The small geo-
metric aspect ratio also ensures that the thermal flux is
dominated solely by thermal conduction along the slen-
der (vertical) direction. Since the vertical length scale is

Case 1

Case 2

Case 3

Shape modulation of colder boundary

Thermal modulation of warmer boundary

Thermal modulation of colder boundary

x

z

Liquid

Liquid

Liquid

FIG. 2. Schematic diagram showing the three types of spa-
tially periodic thermal modulation examined in this work. Darker
stripes signify cooler regions of modulated boundaries.

very small by design, all material constants pertaining to
the gas and liquid layers are assumed to have constant val-
ues except for the liquid surface tension that varies with
temperature along the gas-liquid interface. The insulating
nature of the gas layer plays a significant role in estab-
lishing large variations in temperature along the gas-liquid
interface due to variations in the liquid film thickness.
The liquid film is also assumed to comprise an incom-
pressible Newtonian fluid, which is not a severe restriction
since estimated flow shear rates are too small to induce
non-Newtonian response even in polymer melt films.

The dimensionless thin-film equation describing the
competition between thermocapillary and capillary forces
along the liquid interface is given by

∂H
∂τ

+ ∂

∂X

(
H 3

3
∂3H
∂X 3 − MH 2

2
∂�H

∂X

)
= 0. (1)

Here, H(X , τ) denotes the local film thickness and
�H (X , τ) ≡ �[X , Z = H(X , τ)] denotes the temperature
variation along the free surface Z = H(X , τ). The dimen-
sionless number M = Ma × Ca = γT�To/(ε

2γ ) speci-
fies the ratio of thermocapillary to capillary liquid flux.
Details of the full derivation leading to this form can
be found in Refs. [13–15]. Relevant scalings used in our
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TABLE I. Variable definitions and scalings for the thin-film
thermocapillary model described in the text. Material constants
are typically evaluated at the average temperature of the warmer
substrate surface. For systems subject to spatially periodic mod-
ulation as depicted in Fig. 2, the variables Do and �To refer to
values averaged over one wavelength of the modulation period.

Material constant Symbol

Liquid density ρ

Liquid viscosity μ

Liquid heat capacity cp
Thermal conductivity

ratio
κ = kair/kliq < 1

Liquid thermocapillary
coefficient

γT = |∂γ /∂T|

Dimensional variable Characteristic Dimensionless
scale variable

Initial liquid thickness ho
Intrinsic instability

wavelength
lo = λmax

Small aspect ratio ε2 = (ho/lo)2 � 1
Perturbation variables ε̃ � 1

ε � 1
δ � 1

Geometric scales xo = lo X = x/xo
zo = ho Z = z/zo

Interface height zo = ho H = h(x, t)/zo
Boundary separation

distance
zo = ho D = d(x)/zo

Do = do/ho
Wave numbers ko = 2π/lo Kmax = kmax/ko

Kc = kc/ko
Kext = kext/ko
Q = q/ko

External modulation
ratio

R = Kext/Kc

Horizontal flow
velocity

uo = ε3(γ /μ) U = u/uo

Vertical flow velocity wo = ε4(γ /μ) W = w/wo
Time to = lo/uo τ = t/to
Flow pressure po = μuo/εho P = p/po
Temperature drop �To = T+ − T− � = (T − T−)/�To

Dimensionless number Symbol Value

Prandtl Pr μcp/kliq
Reynolds Re ρuozo/μ

Capillary Ca μuo/(ε
3γ )

Marangoni Ma εγT�To/(μuc)

Surface force ratio M = Ma × Ca γT�To/(ε
2γ )

current study for nondimensionalization of equations and
other relations are listed in Table I.

The slender limit geometry enforces the long-wavelength
approximation that introduces the two small expansion
ratios ε2 � 1 and εRePr � 1—see Table I. As a result,
the heat transfer within the air-liquid bilayer simply

reduces to a system characterized by 1D thermal con-
duction. The temperature field along the free surface can
therefore be obtained by solution of the 1D Laplace
equation ∂2�/∂Z2 = 0, whose four unknown constants
are determined from the boundary conditions imposed at
the warmer (Z = 0) and cooler (Z = D) substrates and the
requirement of continuity in the temperature and thermal
flux field at the moving interface, i.e., �air|H = �liquid|H
and κ(∂�air/∂Z)H = (∂�liquid/∂Z)H . The temperature dis-
tribution along the free surface is given by

�H (X , τ) ≡ �[X , Z = H(X , τ)] =
κH(X , τ)�(X )|Z=D(X ) + [D(X )− H(X , τ)]�(X )|Z=0

[D(X ) − (1 − κ)H(X , τ)]
.

(2)

Variations in the temperature field with time along the
moving interface occur in response to variations in film
thickness caused by hydrodynamic flow.

A. Review of the linear instability wavelength and
growth rate in unmodulated systems

Before examining systems subject to periodic modula-
tion of the temperature field, we first outline key results
pertaining to unmodulated systems, defined by flat solid
boundaries held at a constant separation distance D(X ) =
Do and constant temperature differential where �+(Z =
0) = 1 and �−(Z = Do) = 0. Equations (1) and (2) then
combine to give the governing nonlinear fourth-order
equation:

∂H
∂τ

+ ∂

∂X

{
H 3

3
∂3H
∂X 3 + κDoMH 2

2[Do − (1 − κ)H ]2

∂H
∂X

}
= 0.

(3)

The terms in brackets represent the total fluid flux from
capillary and thermocapillary flows, respectively. A first-
order perturbation analysis of Eq. (3) about a uniform base
state where H(X , τ) = 1 + ε̃H̃(X , τ) and ε̃ � 1 yields the
linearized fourth-order equation given by [13,15]

∂H̃
∂τ

+ 1
3

∂4H̃
∂X 4 + κDoM

2(Do + κ − 1)2

∂2H̃
∂X 2 = 0. (4)

Throughout this work, we focus exclusively on periodic
disturbances, whose general solution for the unmodulated
system is

H̃(X , τ) =
∞∑

n=0

eβnτ [an cos(KnX ) + bn sin(KnX )], (5)

where

βn =
(

κDoM
2(Do + κ − 1)2 − K2

n

3

)
K2

n (6)
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and

Kn = 2πn for n = 0, 1, 2, . . . . (7)

This disturbance solution can also be re-expressed as

H(X , τ) = 1 + ε̃

∞∑
n=0

eβnτ cos(2πnX + φn), (8)

where the phase constants φn are determined by the initial
condition.

The quadratic term in Eq. (6), which can be made very
large and reflects growth of protrusions by thermocapillary
forces, is counteracted by the quartic term, which reflects
the leveling action of capillary forces and is especially
large in regions of high interfacial curvature, such as the
tips of protrusions or indentations in the interstitial regions.
This competition in surface forces generally leads to the
dispersion curve in Fig. 3 characterizing all type-II insta-
bilities [32]. The fastest growing mode Kmax is determined
from the relation

Kmax =
√

3κDoM
4(Do + κ − 1)2 , (9)

and the corresponding maximum growth rate is given by

βmax = 3
16

(κDoM)2

(Do + κ − 1)4 . (10)

A key wave number for the analysis to follow is Kc, which
represents the point of marginal stability, i.e., β(K) = 0 for
K �= 0, as indicated in Fig. 3:

Kc =
√

2Kmax =
√

3κDoM
2(Do + κ − 1)2 . (11)

The governing linearized equation for early time distur-
bance growth can therefore be rewritten as

∂H̃
∂τ

+ 1
3

∂4H̃
∂X 4 + K2

c

3
∂2H̃
∂X 2 = 0. (12)

In Sec. IV, we examine more closely the dynamics in
the vicinity of Kc for systems subject to spatially periodic
boundary modulation.

In contrast to onset of a RB instability, which only
occurs if the critical Rayleigh number is exceeded, the dis-
persion equation for the long-wavelength thermocapillary
instability given by Eq. (9) reveals that there is no criti-
cal value for M. That is, an initial flat film will undergo
thermocapillary instability no matter how small the value
M [33]. Periodic deformations of the moving interface

Type-II linear instability 

Kmax

β(K)

Kc
K

FIG. 3. Disturbance growth rate β(K) (dimensionless form)
for the long-wavelength thermocapillary instability for a slen-
der gas-liquid bilayer confined between flat boundaries held at
constant separation and temperature difference. The dispersion
relation is of type II, where Kmax is the wave number of the fastest
growing unstable mode. Thermocapillary forces promote growth
for K < Kc while capillary forces repress growth for K > Kc,
where Kc denotes the wave number of the marginally stable state.

therefore always occur no matter how small the tempera-
ture differential �To. The smaller the value �To, of course,
the smaller the value Kmax and therefore the larger the
value of the array pitch.

Reverting to the dimensional form of the most unstable
wavelength, the achievable pattern pitch for small-scale
periodic deformation of an initial flat film is given by

λmax = 2πho

√
4γ ho

3κdoγT�To

(
do

ho
+ κ − 1

)
. (13)

Optical measurements of early time growth and pitch
formation [17,18] for small clusters of protrusion arrays
demonstrate good agreement with the prediction from
Eq. (13). As discussed in the Introduction, however, the
patterns still exhibit nonuniformities and lack true long-
range order. In what follows, we demonstrate how resonant
excitation triggered by spatial boundary modulation can
be used to generate highly uniform arrays with a smaller
pitch set by the modulation wavelength 2π/kext and not
the instability wavelength λmax.

IV. RESONANT WAVELENGTH ANALYSIS FOR
CASE 1, 2, AND 3 MODULATION

For simplicity, we restrict analysis in this paper to sys-
tems involving either shape or thermal modulation of one
boundary. Thermal modulation of the liquid interface tem-
perature is achieved either by spatial periodic modulation
of the cooler boundary surface where D(X ) = Do[1 +
δ cos(KextX )], which we coin case 1 systems, or thermal
modulation of one of the flat boundaries with �+(X ) =
1 + δ cos(KextX ) (case 2) or �−(X ) = δ cos(KextX ) (case
3). Since we seek arrays with a finer pitch than λmax in
unmodulated systems, we restrict attention to the range
Kext > Kc.
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For case 1 systems, the thermal boundary conditions are
given by

�+(X ) = �(X , Z = 0) = 1, (14)

�−(X ) = �(X , Z = D(X )) = 0. (15)

According to Eq. (2), the temperature distribution along
the free interface reduces to the form

�H (X , τ) = D(X ) − H(X , τ)

D(X ) − (1 − κ)H(X , τ)
, (16)

which when substituted into Eq. (1) gives

∂H
∂τ

+ ∂

∂X

{
H 3

3
∂3H
∂X 3

}

+ ∂

∂X

{
κMH 2

2[D − (1 − κ)H ]2

(
D

∂H
∂X

− H
∂D
∂X

)}
= 0.

(17)

For this case, the term ∂�H/∂X in Eq. (1) gives rise to
two sources of thermocapillary flow. The first is generated
by variations in the local film thickness H(X , τ) and the
second is generated by the thermal field imprinted onto the
film from the corrugated topography D(X ) of the colder
boundary. As expected, the competition between the length
scale K−1

c set by the intrinsic instability and that set by
the modulation length scale K−1

ext leads to complex and
nonlinear wave interactions. As we shall see, final liquid
configurations can either exhibit disordered arrays with
highly nonuniform pitch, shapes, and peak heights that do
not align with the cooler regions of the modulated sub-
strate or desirable, rapid, and highly synchronized growth
leading to uniform periodic arrays.

A. Linear stability analysis

We first consider the limit of small amplitude modu-
lation of the colder boundary such that D(X ) = Do[1 +
δ cos(KextX )] with δ � 1. A perturbation expansion of
Eq. (17) with H(X ) = 1 + δHp(X , τ) yields the linearized
fourth-order equation incorporating thermal modulation
given by

∂Hp

∂τ
+ 1

3
∂4Hp

∂X 4 + K2
c

3
∂2Hp

∂X 2 = −K2
c K2

ext

3
cos(KextX ),

(18)

where Kc is defined by Eq. (11). The homogeneous solu-
tion is identical to that derived earlier for Eq. (12). The

general solution to O(δ) is then

H(X , τ) = 1 + δ

∞∑
n=0

eβnτ cos(2πnX + φn)

− δ cos(KextX )
K2

c

K2
ext − K2

c

× (1 − e−K2
ext(K

2
ext−K2

c )τ/3), (19)

where the growth rate given by Eq. (6) can be re-
expressed as

βn = 1
3 (K2

c − K2
n )K2

n , (20)

where Kn = 2πn for n = 0, 1, 2 . . .. The phase constants
φn are determined from the initial condition. This solu-
tion, of course, is no longer valid when the second term
approaches a value of the order 1/δ, or equivalently when
τ � β−1

max ln δ−1.
Equation (19) describes interface evolution by two pro-

cesses characterized by different time constants, namely
growth by the intrinsic instability with time constant β−1

max
given by Eq. (10) and resonant growth due to thermal
modulation with a time constant

τext = 3
K2

ext(K2
ext − K2

c )
. (21)

In general, disturbance evolution according to Eq. (19)
is expected to manifest disordered growth, leading to
nonuniformity in protrusion pitch, amplitude, and shape.
However, for parameter values βn < 0 and Kext > Kc, the
interface height is expected to attain a saturated resonant
state of the form

H(X ) = 1 − δ

(
K2

c

K2
ext − K2

c

)
cos(KextX ). (22)

B. Multiple scales analysis about Kc

The influence of weakly nonlinear behavior due to wave
interactions between the thermocapillary instability and
the spatially periodic modulation can be further examined
by carrying out a multiple scales expansion near Kc based
on the two time scales above. To that end, we introduce
the stretched time scale τ ′ = ε2τ and, as customary [34],
treat the variables τ and τ ′ as independent quantities. The
interface function is then expanded according to

H(ξ , τ) = 1 + εH1(ξ , τ , τ ′) + ε2H2(ξ , τ , τ ′)

+ ε3H3(ξ , τ , τ ′), (23)

where ξ = KextX and ε � 1. Substitution of the relation
τ = τ ′/ε2 into the exponent of the last term in Eq. (19)
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reveals the scaling

(Kext − Kc)/Kc = ε2α, (24)

where the constant α > 0. Inserting this relation into the
amplitude of the last term of Eq. (19) reveals that the
amplitude coefficient scales as δ/ε2. Since this term rep-
resents a first-order disturbance proportional to ε, it must
then be the case that δ scales as ε3, which without loss of
generality is defined to be

δ = ε3. (25)

The perturbative solution through order ε3 is obtained
by substituting the expansion in Eq. (23) into Eq. (17)
recast in terms of ξ , subject to the spatially periodic condi-
tion H(ξ = 0, τ , τ ′) = H(ξ = Kext = 2π , τ , τ ′). The orig-
inal time derivative then expands into two separate terms
describing fast and slow dynamics, according to which

∂H
∂τ

→
(

∂

∂τ
+ ∂

∂τ ′
∂τ ′

∂τ

)
(1 + εH1 + ε2H2 + ε3H3)

= ε
∂H1

∂τ
+ ε2 ∂H2

∂τ
+ ε3

(
∂H3

∂τ
+ ∂H1

∂τ ′

)
. (26)

Accordingly, the governing equation to order ε is

∂H1

∂τ
+ K4

c

3
L{H1} = 0, (27)

where

L =
(

∂4

∂ξ 4 + ∂2

∂ξ 2

)
, (28)

whose general solution is

H1(ξ , τ , τ ′) = Q1(τ
′) cos[ξ + �1(τ

′)]

+
∞∑

n=2

a1,n cos(nξ + φ1,n)e−n2(n2−1)K4
c τ/3.

(29)

Proceeding similarly, the governing equation for H2
(ξ , τ , τ ′) is

∂H2

∂τ
+ K4

c

3
L{H2} = (2B − 1)

K4
c

3
Q2

1(τ
′)

× cos[2ξ + 2�1(τ
′)] + F(ξ , τ),

(30)

where F represents the contribution dependent on the
unstretched variable τ . The constant B given by

B = 1 − κ

Do + κ − 1
> 0 (31)

is set by the relevant geometric and material parameters
and is always positive since Do > 1 and 0 < κ < 1. The
general solution to order ε2 is

H2(ξ , τ , τ ′) = 2B − 1
12

Q2
1(τ

′) cos[2ξ + 2�1(τ
′)]

+ Q2(τ
′) cos[ξ + �2(τ

′)] + F̃(ξ , τ), (32)

where F̃ represents the contribution that decays exponen-
tially in proportion to τ . As expected, periodic modulation
triggers the onset of both the fundamental and second
harmonic responses.

Solution of the amplitude function Q1(τ
′) requires

expansion to order ε3. Substitution of the functions H1 and
H2 into Eq. (17) yields the governing equation

∂H3

∂τ
+ K4

c

3
L{H3} = −K4

c

3
cos ξ + Q1(τ

′)
d�1

∂τ ′ sin[ξ + �1(τ
′)]

−
[

dQ1

dτ ′ + 2α

3
K4

c Q1(τ
′) −

(
22B2 − 16B + 7

72
K4

c Q3
1(τ

′)
)]

cos[ξ + �1(τ
′)]

+ 2
3
(2B − 1)K4

c Q1(τ
′)Q2(τ

′) cos[2ξ + �1(τ
′) + �2(τ

′)]

+ 10B2 − 8B + 3
8

K4
c Q3

1(τ
′) cos[3ξ + 3�1(τ

′)] + G(ξ , τ), (33)

where G represents the contribution dependent on the unstretched time scale and α is given by Eq. (24). Since the
functions sin ξ and cos ξ are solutions of the homogenous equation L{H3} = 0, such terms give rise to contributions
in H3 proportional to ξ sin ξ and ξ cos ξ , which do not satisfy the periodic boundary condition. As a result, the sum of
coefficients on the right-hand side of Eq. (33), which are separately proportional to sin ξ and cos ξ , must both sum to
zero. These summation conditions yield the requirements d�1/dτ ′ = 0 and
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dQ1

dτ ′ = K4
c

(
c3Q3

1 − 2
3
αQ1 − c0

)
, (34)

where c0 and c3 represent the positive constant values

c0 = 1
3 , (35)

c3 = 22B2 − 16B + 7
72

= 2D2
o + 45(Do/3 + κ − 1)2

72(Do + κ − 1)2 , (36)

with the choice �1 = 0 since the origin of time is arbitrary.
Equation (33) then reduces to

3
K4

c

∂H3

∂τ
+ L{H3}

= 2(2B − 1)Q1(τ
′)Q2(τ

′) cos[2ξ + �2(τ
′)]

+ 3
8

[10B2 − 8B + 3]Q3
1(τ

′) cos(3ξ) + G(ξ , τ),

(37)

whose solution is

H3(ξ , τ , τ ′) = Q3(τ
′) cos[ξ + �3(τ

′)]

+ 2B − 1
6

Q1(τ
′)Q2(τ

′) cos[2ξ + �2(τ
′)]

+ 10B2 − 8B + 3
192

Q3
1(τ

′) cos(3ξ) + G̃(ξ , τ).

(38)

While this solution exhibits third harmonic response in
phase with the external forcing, it also includes phase-
delayed contributions from the first and second harmonics.
The solution H(ξ , τ , τ ′) in the limit Kext → Kc up through
order ε3 therefore describes interface shapes both in and
out of phase with the wave number Kext, which will in
general elicit disordered growth. In the section that fol-
lows, however, we demonstrate parameter ranges that lead
to highly synchronous growth.

To conclude this section, we note that a multiple scales
analysis as K → Kc was also conducted for the unmodu-
lated case described in Sec. III A. That analysis yields the
identical relation given by Eq. (34) with c0 = 0.

C. Stability of equilibrium solutions about Kc

According to Eq. (29), the solution for small amplitude
disturbances as Kext → Kc for case 1 systems is given by ε,

H1(X , τ ′) = 1 + εQ1(τ
′) cos(KextX ). (39)

We now seek stable equilibrium solutions with dQ1/dτ ′ =
0 given by the cubic roots of Eq. (34). The crite-
rion for stability can be found by substitution of the

expansion Q1(τ
′) = Q̄1 + �Q1(τ

′) into Eq. (34) where
�Q1(τ

′) � 1:

1
�Q1

d�Q1

dτ ′ = K4
c

(
3c3Q̄2

1 − 2α

3

)
. (40)

Stable equilibrium solutions satisfy the inequality Q̄2
1 <

2α/(9c3), where α > 0 and c3 > 0, as shown previously.
Consequently, for a specified value α, which scales lin-
early with the ratio Kext/Kc, there exists an upper bound
on the corrugation amplitude Q̄1(α) below which periodic
solutions are linearly stable and above which they undergo
rapid growth. The coupled set of equations governing the
stability boundary are

c3Q̄3
1 − 2

3
αQ̄1 − c0 = 0, (41)

3c3Q̄2
1 − 2α

3
= 0, (42)

which yield only one pair of real solutions {Q̄∗
1, α∗}. The

linear stability of small amplitude periodic equilibrium
states therefore requires

|Q̄1| < |Q̄∗
1| =

(
c0

2c3

)1/3

, (43)

α > α∗ = 9
(

c2
0c3

32

)1/3

. (44)

We note that, since Q̄∗
1 < 0, stable equilibrium solutions

given by Eq. (39) represent corrugated film shapes that
are π out of phase with the modulation function D(X ).
This is to be expected since thermocapillary flow acts in
such a way that those portions of the boundary profile
D(X ) closer to the liquid interface induce cooling with
an increase in surface tension in regions of immediate
vicinity. In turn, fluid is drawn to those cooler regions,
causing growth of protrusions and an interface config-
uration resembling an inversion of the boundary shape
D(X ).

Shown in Fig. 4 is a comparison of the bifurcation dia-
gram Q̄1(α) for the unmodulated system [i.e., D(X ) = Do]
and case 1 modulation subject to an identical average sub-
strate temperature difference. As evident, the unmodulated
system exhibits a perfect forward bifurcation—the latter an
imperfect one.

As was shown in Sec. IV B, the relation between the
amplitude of the boundary modulation and the resulting
modulation amplitude of the liquid film is given by δ = ε3.
This identity can be used to relate the bifurcation parame-
ter α∗ to the critical modulation amplitude δ∗ below which
a steady, small amplitude periodic equilibrium state can be
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achieved, namely,

δ < δ∗ = (α∗)−3/2
(

Kext

Kc
− 1

)3/2

= 1
27

√
32

c2
0c3

(
Kext

Kc
− 1

)3/2

, (45)

where c0 and c3 are given by Eqs. (35) and (36),
respectively. For δ < δ∗, the initial flat film will rapidly
adopt the small amplitude equilibrium shape H1(X ) =
1 + εQ1 cos(KextX ) that can persist for some time. For
δ > δ∗, the initial film will also develop periodic protru-
sions, but these will accelerate ever more rapidly toward
the colder boundary until a peak makes contact with the
colder boundary or a valley makes contact with the warmer
boundary. In Sec. VII E, we directly compare the critical
values estimated from Eq. (45) against results extracted
from direct numerical simulation.

The analysis in this section suggests the existence of
a parameter range for which the amplitude Q1 governing
the growth of H1 is time independent and the solution
linearly stable. However, this does not preclude time-
dependent behavior from the progressively smaller contri-
butions H2(ξ , τ , τ ′) or H3(ξ , τ , τ ′). By continuation of the
expansion procedure utilized above, we confirmed that Q2

α

–4

–2

0

2

4

–2 –1 0 1 2

–2

0

2

4

–4

Q1

(a)  

(b)  

Unmodulated system

Case 1 modulation

Stable branch

Unstable branch

α∗
Stable branch

Unstable branch

Q1

FIG. 4. Solutions to Eq. (41) for the equilibrium amplitude
Q̄1(α) for identical average substrate temperature and separa-
tion distance for κ = 1/4 and Do = 5. Shown are results for
(a) an unmodulated system and (b) a case 1 system. Bifurcation
coordinate (α∗, Q̄∗

1): (a) (0, 0) and (b) (0.554 958, −1.351 45).

TABLE II. Spatial and thermal boundary conditions where
F(X ) = cos(KextX ) and δ � 1. The coefficient values ϒ are
required for the entries in Table III.

Separation gap Substrate Coefficient value
D(X )/Do temperatures ϒ

Case 1 1 + δF(X ) �+ = 1 1
�− = 0

Case 2 1 �+ = 1 + δF(X )
(Do + κ − 1)(Do − 1)

κDo
�− = 0

Case 3 1 �+ = 1
(Do + κ − 1)

Do
�− = δF(X )

undergoes exponential decay in time on the stable branch
of Q1; however, no such demonstration was possible for
Q3 to order ε5. As for the phase functions, we confirmed
that �2 remains time independent to order ε4 and �3 time
independent to order ε5.

In Sec. VII devoted to direct numerical simulations, we
demonstrate that initial conditions describing a flat film
with small amplitude surface roughness preclude forma-
tion of truly stationary periodic states. However, there can
occur a sustained period in time marked by the emergence
of quasistationary patterns that grow extremely slowly.
For convenience, we refer to these intermediate time,
small amplitude quasistationary states as saturated periodic
states. The stability of such states is investigated in depth
in Sec. V using Bloch wave analysis.

D. Linear stability and multiple scales analysis
generalized to cases 2 and 3

In the previous section, we focused exclusively on case
1 modulation. The analysis presented can be extended to
case 2 and 3 modulation as well. The general analysis
leads to changes in the values of certain coefficients in the
boundary conditions and subsequent relations. Summaries
of these modifications applicable to all three cases depicted
in Fig. 2 are provided in Tables II and III. The coefficients
ϒ depend only on the ratio of gas to liquid thermal con-
ductivities κ and the geometric constant Do representing
the average solid boundary separation distance.

TABLE III. Modified coefficient values for generalization of
equations to case 1, 2 and 3 modulation.

ϒ modified coefficient values

Equation (18) cos(KextX ) → ϒ cos(KextX )

Equation (19) cos(KextX ) → ϒ cos(KextX )

Equation (33) − cos ξ → −ϒ cos ξ

Equation (35) 1/3 → ϒ/3
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V. GENERAL BLOCH WAVE ANALYSIS

In Sec. IV, it was demonstrated how spatial modula-
tion of the thermal field can elicit quasistationary periodic
formations with periodicity 2π/Kext at early to interme-
diate times. We next establish necessary conditions for
such periodic states satisfying Ho(X ) = Ho(X + 2π/Kext)

to represent linearly stable configurations. As detailed
below, linearization about a spatially modulated base state
generates an operator equation with spatially periodic coef-
ficients. The resulting linear operator is no longer self-
adjoint and the eigenvalues no longer purely real. Bloch
decomposition provides an analytic tool well suited to this
problem.

Bloch [35] demonstrated how to construct solu-
tions—now called Bloch functions or Bloch waves—to
linear evolution equations containing spatially periodic
coefficients. He encountered this problem in the context
of the Schrödinger equation for electron wave functions
�(r) subject to an atomic lattice representing a spatially
periodic potential. He showed that the solutions can be
described by the form �(r) = eik·ru(r), where the peri-
odicity of the function u(r) is given by the periodicity
of the underlying potential function. Since then, a sim-
ilar approach has been used to solve various evolution
equations with spatially periodic coefficients, including
hydrodynamic problems involving pattern formation [32].
We therefore linearize Eq. (1) about the periodic base state
Ho(X ) = Ho(X + 2π/Kext) by expanding perturbations in
terms of Bloch functions of wave number Q:

H(X , τ) = H0(X ) + σe�(Q,Kext)τ HQ(X )eiQX (46)

with HQ(X ) = HQ(X + 2�/Kext), 0 ≤ Q ≤ Kext, and
σ � 1. The range Q follows from observation that a Bloch
function HQ(X ) can always be written in terms of another
Bloch function eiMKextX HQ(X ) for integer values M and
so wave numbers Q that fall outside the fundamental
range can always be mapped back onto the fundamental
range [32]. Substitution of Eq. (46) into Eq. (1) yields the
corresponding eigenvalue equation:

�HQ = LQ{HQ} =
{ 4∑

j =0

aj (X )Dj
Q

}
HQ(X ) (47)

with Dj
Q = ∂ j /∂X j + iQ and Dj =0

Q = 1. For later analysis,
we denote the eigenvalue with maximum real part as �max
and its corresponding wave number Qmax.

As detailed next, the coefficients an depend nonlinearly
on the functions Ho(X ), its higher-order derivatives, and
the functions �H (X )(i,j ), which also depend nonlinearly
on Ho(X ). It is therefore expected that perturbations to the
spatially periodic base state Ho(X ) will in general yield
solutions H(X , τ) not matching the periodicity of Ho(X ),
thereby generating configurations not characterized by a

TABLE IV. Expressions for �(X ) and �̃(X ) for case 1, 2 and
3 modulation.

�(X ) �̃(X )

Case 1 D(X ) = Do[1 + δ cos(KextX )] 1
Case 2 �+(X ) = 1 + δ cos(KextX ) 1 + δ cos(KextX )

Case 3 �−(X ) = δ cos(KextX ) 1 − δ cos(KextX )

single wave number Kext. Such configurations will also be
examined in more depth in Sec. VII.

The analytic expressions for the coefficient functions
a1, . . . , a4 are as follows, where superscripts indicated by
a prime symbol denote differentiation with respect to X :

a0 = MH ′
o(�

′�(0,1)
H + H ′

o�
(1,0)
H )

+ H0[M(�′′�(0,1)
H + �′2�(0,2)

H + H ′′
o �

(1,0)
H )

+ H ′
o(−2H ′′′

o + 3M�′�(1,1)
H ) + 2MH ′2

o �
(2,0)
H ]

+ MH 2
o

2
(�′′�(1,1)

H + �′2�(1,2)
H + H ′′

o �
(2,0)
H

+ 2�′H ′
o�

(2,1)
H + H ′2

o �
(3,0)
H )

− H 2
o H ′′′′

o , (48a)

a1 = Ho{M(�′�(0,1)
H + 2H ′

o�
(1,0)
H )

+ Ho[−H ′′′
o + M(�′�(1,1)

H + H ′
o�

(2,0)
H )]},

(48b)

a2 = MH 2
o

2
�

(1,0)
H , (48c)

a3 = −H 2
o H ′

o, (48d)

a4 = −H 3
o

3
. (48e)

The expressions for the functions �(X ) and �̃(X ) appear-
ing above are listed in Table IV. The expressions for �

(i,0)
H

are given by

�
(1,0)
H = −κD�̃(X )

[D + (κ − 1)H0(X )]2 , (49a)

�
(2,0)
H = 2(κ − 1)κD�̃(X )

[D + (κ − 1)H0(X )]3 , (49b)

�
(3,0)
H = −6(κ − 1)2κD�̃(X )

[D + (κ − 1)H0(X )]4 , (49c)

where the expressions for �
(i,j )
H are listed in Table V.

In Figs. 6–11(f) of Sec. VII, we draw direct comparison
between the estimated growth rates � given by Eq. (47)
based on small perturbations to spatially periodic equi-
librium states and results extracted from direct numerical
simulations.
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VI. NUMERICAL MODEL AND PARAMETER
CHOICES

Numerical solutions for H(X , τ) for unmodulated and
modulated systems governed by Eq. (1) are obtained by
the method of lines. Spatial derivatives are discretized by
fourth-order, centered finite differences and time stepping
is based on backward differentiation. When ascertaining
the influence of noise, simulations are initialized by inter-
face functions describing a flat film with a small degree of
surface roughness modeled by white Gaussian noise:

H(Xn, 0) = 1 + AG(Xn). (50)

Here A = 10−3 and G(Xn) denotes random seed values
drawn from a Gaussian distribution with standard devi-
ation one. For initial states devoid of noise, the initial
condition is simply set to the uniform value H(X , τ =
0) = 1.0.

Those simulations initialized with noise free profiles,
which included the bifurcation analysis in Sec. IV C and
the Bloch wave and stability analysis in Sec. V, are car-
ried out within a spatial domain of length L = 1 containing
N = 256 grid points and representing one period of the
modulation wave number Kext = 2π . For those simulations
with noisy initial conditions designed to mimic experi-
mental conditions, the domain size is extended to L =
64 with each subinterval L = 1 containing N = 128 grid
points. For all simulations conducted, periodic boundary
conditions are enforced by requiring H(X = −L/2, τ) =
H(X = +L/2, τ).

For all cases examined, the thermal conductivity ratio
of air to liquid is set to a value κ = 0.25 in line with
experimental values [16–18,22]. The average boundary
separation distance is also set to Do = 5 unless otherwise
specified.

A. Parameter range and resulting simplified relations

For the simulations in this work, the modulation wave
number is held fixed at the value Kext = 2π and sweeps of
the ratio R > 1, where

R = Kext

Kc
= 2π√

2 Kmax
, (51)

are carried out to elicit parameter ranges in modulated sys-
tems leading to periodic arrays with a smaller pitch than in
corresponding unmodulated systems. As stated previously,
the thermal conductivity ratio and average boundary sepa-
ration distance are also held fixed at Do = 5 and κ = 0.25.
The controlling dimensionless number M in Eq. (1) then
reduces to the approximate value

M = 8π2

3R2

(Do + κ − 1)2

κDo
≈ 578

15

(
π

R
)2

, (52)

indicating the scaling relation M ∼ R−2. Upon substitu-
tion of Eq. (51), the criterion given by Eq. (45) also reduces
to the relation

δ < δ∗(R) = 4
9ϒ

√
2
c3

(R − 1)
3/2 , (53)

where the values ϒ and c3 for case 1, 2 and 3 modulation
are listed in Table II and Eq. (36), respectively. All rele-
vant parameter values for the simulation results shown in
Figs. 5 through 11 are provided in Table VI.

Identification of those normal modes that dominate fluid
response during growth allowed determination of various
physical mechanisms responsible for structure formation
during different stages of the patterning process. To that
end, spectral analysis was based on the norm N(K/Kext, τ)

of the discrete Fourier transform of the interface displace-
ment according to

TABLE V. Functions �
(i,j )
H for case 1, 2 and 3 modulation.

�
(i,j )
H Case 1 Case 2 Case 3

�
(0,1)
H

κHo(X )

[D(X ) + (κ − 1)Ho(X )]2

Do − Ho(X )

Do + (κ − 1)Ho(X )

κHo(X )

Do + (κ − 1)Ho(X )

�
(0,2)
H

−2κHo(X )[
D(X ) + (κ − 1)Ho(X )]3

0 0

�
(1,1)
H

κ[D(X ) + (1 − κ)Ho(X )]
[D(X ) + (κ − 1)Ho(X )]3

−κDo

[Do + (κ − 1)Ho(X )]2

κDo

[Do + (κ − 1)Ho(X )]2

�
(1,2)
H

−2κ[D(X ) + 2(1 − κ)Ho(X )]
[D(X ) + (κ − 1)Ho(X )]4 0 0

�
(2,1)
H

2κ(1 − κ)[2D(X ) + (1 − κ)Ho(X )]
[D(X ) + (κ − 1)Ho(X )]4

2κ(κ − 1)Do

[Do + (κ − 1)Ho(X )]3

−2κ(κ − 1)Do

[Do + (κ − 1)Ho(X )]3
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FIG. 5. Thermocapillary instability and growth of multiple protrusions for an unmodulated system (δ = 0) with a flat warmer
boundary at Z = 0 and a flat colder boundary at Z = 5.0. Parameter values given in Table VI along with selected times shown.
(a) Evolution of H(X , τ) for domain length −32 ≤ X ≤ +32 (partial domain shown). (b) Plan view of structure formation in (a);
color map denotes magnitude H(X , τ). (c) Time traces of H(X , τ) at selected locations: dark curves (purple) signify values at
Xi = −7.5, −6.5, . . . , +6.5, +7.5; light curves (orange) signify values at Xi = −8.0, −7.0, −6.0, . . . , +6.0, +7.0, +8.0. (d) Results
from Eq. (54) for the run in (a) with Kext replaced by Kmax—inset shows same results on a log-linear scale. Vertical dashed line (black)
denotes Kmax given by Eq. (9). (e) Averaged results from Eq. (54) based on 50 independent runs initialized by Eq. (50)—inset shows
the same results on a log-linear scale. Curve Kmax in (c) represents the averaged values extracted from (e). (f) Modal growth rates
β(K/Kmax) from Eq. (6) for a noise-free initial condition and from Eq. (54) for 50 independent runs for 0 ≤ τ ≤ 0.005 [shaded region
in (c)]. Error bars from different runs are not visible since they are smaller than the marker diameter.

N(K/Kext, τ)

=
∣∣∣∣

N−1∑
n=0

[H(Xn, τ) − 1]e−2π i(n/N )(K/Kext)

∣∣∣∣. (54)

For unmodulated systems, Kext is replaced by Kmax.
Equation (54) was evaluated for individual realizations

as well as averages based on 50 independent realiza-
tions seeded by different random numbers in the initial
condition.

For cases involving continual growth without forma-
tion of an intermediate saturated periodic state, theoreti-
cal predictions from Eqs. (6) and (20) for the maximum
exponential growth rates β(K/Kmax) and β(K/Kext) based
on a noise-free initial condition are directly compared to
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TABLE VI. Parameter values for numerical solutions of case 1 and 2 modulation for films initialized by Eq. (50) with choices Do = 5,
κ = 0.25, and Kext = 2π . Resulting reduced expressions for R = Kext/Kc and M are given by Eqs. (51) and (52), respectively. The
variable δ denotes the modulation amplitude value; times τj signify the time stamps of configurations shown in Figs. 5 through 11.

Case R M Kmax/2π Kext/2π Qmax/2π δ τj

Figure 5 Unmodulated 760.618 1.0 0 0 0.013, 0.016, 0.018, 0.020, 0.040
Figure 6 1 1.2 264.103 0.589 26 1.0 0.5 0.10 0.050, 0.100, 0.115, 0.125, 0.140, 0.200
Figure 7 1 1.2 264.103 0.589 26 1.0 0.25 0.005, 0.010, 0.020, 0.050, 0.400
Figure 8 1 2.0 95.077 0.353 55 1.0 0.5 0.50 0.100, 0.300, 0.350, 0.400, 0.460
Figure 9 1 2.0 95.077 0.353 55 1.0 0.65 0.001, 0.002, 0.003, 0.004, 0.007
Figure 10 2 3.0 42.257 0.235 70 1.0 0.365 0.10 0.500, 1.500, 1.700, 1.800, 1.900, 2.500
Figure 11 2 3.0 42.257 0.235 70 1.0 0.40 0.001, 0.002, 0.004, 0.007, 0.020, 0.500

the modal growth rates extracted from Eq. (54) from runs
initialized with the noisy initial condition in Eq. (50). The
numerical values for the maximum modal growth rates
are obtained from least-squares linear fits to the relation
ln N(K/Kext, τ) versus τ over the time interval specified.

For studies focused on the linear stability of Bloch
periodic states, which tended to form at intermediate
times, theoretical predictions for the maximum growth
rates �(Q, K/Kext) are computed from Eq. (47). The
input base state functions Ho(X ) for these computa-
tions corresponded to the late time (i.e., τ → 1) numer-
ical solutions of Eq. (1) with L = 1 and a noise-free
initial condition H(X , τ = 0) = 1.0. These results are
directly compared to data extracted from Eq. (54) based
on runs initialized by the noise condition in Eq. (50).
For the parameter values used in this work, the maxi-
mum eigenvalues �max(Q, Kext) are always found to be
real and positive, indicating that, when they form, Bloch
states Ho(X ) are linearly unstable to binary coalescence
events. These events eventually lead to a final array
pitch roughly twice as large as the Bloch wave pitch.
The results and discussion presented below discuss our
findings for case 1 and 2 systems. The results for case
3 systems exhibited similar trends and are not shown
here.

Solutions for the various calculations described above
are carried out using routines available in NumPy [36], an
extensive PYTHON library for scientific computing. More
information about these algorithms can be found else-
where [37,38]. We note in passing that the assumptions
underlying Eq. (1) require that no point of the mov-
ing interface can make contact with either the warmer
or cooler boundary surface since physical effects that
then ensue are not incorporated into this equation. In
the numerical simulations, a stop condition is applied in
order to prevent any interface contact with either solid
boundary.

In the Supplementary Material provided [39], the inter-
ested reader will find animations of the numerical solutions
presented in panels (a) and (d) of Figs. 5 through 11.
These animations, which depict the solutions H(X , τ) and
N(K/Kext, τ), respectively, offer a more detailed view of

spatiotemporal wave interference effects and coalescence
events that occur during pattern evolution.

VII. RESULTS OF DIRECT NUMERICAL
SIMULATIONS: REAL AND RECIPROCAL

SPACE ANALYSIS

A. Unmodulated system

The solutions H(X , τ) in Fig. 5(a) depict onset and sub-
sequent growth of the thermocapillary instability for an
unmodulated system. Although the protrusion shapes and
array pitch appear uniform at early times, the influence of
white Gaussian noise in the initial condition coupled with
binary coalescence events (e.g., near X = −4) prevents
formation of a periodic array. In particular, binary coales-
cence events produce taller structures that, according to the
dynamics of thermocapillary flow, advance more rapidly
toward the colder boundary than smaller neighboring pro-
trusions. The colored image in Fig. 5(b) depicts a plan view
of the evolving film thickness in (a). The resulting color
gradients highlight the transition from a relatively uni-
form state at early time to a disordered state for τ > 0.015
exhibiting only short-range order.

Figure 5(c) depicts time traces of interface displacement
for the run in (a). As evident, small amplitude growth
gives way to rapid growth of ever taller protrusions and
rapid thinning of interstitial regions between adjacent pro-
trusions. Development of large viscous stresses within
these ultrathin regions eventually constricts liquid flow
and redistribution, thereby drastically slowing growth. The
spread in the data at τ = 0.4 confirms a final state marked
by significant variation in peak height, a situation which
ultimately disfavors use of the thermocapillary instability
as a patterning technique for large area arrays. The curve
labeled Kmax, which is extracted from Fig. 5(e) for the
period in time indicated by the shaded region in (c), rep-
resents the evolution of the magnitude of the associated
Fourier coefficient. As predicted, this most unstable mode
from linear stability analysis dominates the pitch of the
array formation process at early times. As time progresses,
however, this periodicity is compromised by the influence
of noise and coalescence events.
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Shown in Fig. 5(d) are the results from Eq. (54) for
the run in (a) with Kext replaced by Kmax. The observed
broadband response reflects the influence of noisy ini-
tial conditions. The vertical dashed line represents the
wave number Kmax of the fundamental mode given by
Eq. (9)—integer multiples of this value represent higher-
order harmonics. The results in Fig. 5(e) represent the
average spectral response based on 50 independent runs
initialized by Eq. (50) with different seed values. The aver-
age response reveals more clearly the rapid growth of the
Kmax mode and its harmonics.

Shown in Fig. 5(f) is a comparison of the early time
modal growth rates from Eq. (6) based on a noise-free
initial condition with estimates of the run in (a) initial-
ized by the white noise condition and extracted from (d)
over the time interval 0 ≤ τ ≤ 0.005. The agreement is
excellent, thereby establishing the dominance of the Kmax
mode at early times of the patterning process. However,
the results in (b) and (c) are not encouraging since, while
the protrusions at early and intermediate times are peri-
odic, their peak heights are likely too small to be of
use for micro-optical applications. Furthermore, while the
structures attained at late times are significantly taller,
they too are not useful since the configurations lack
periodicity.

B. Case 1: small amplitude modulation with
R = Kext/Kc = 1.2

It was shown in Secs. IV B and IV C that, for small
amplitude modulation with wave number Kext near Kc,
there exists a maximum value of the modulation amplitude
δ∗ given by Eq. (45) below which spatially periodic states
are linearly stable to small disturbances and above which
they are linearly unstable. In what follows, we demon-
strate the different dynamics that ensue below and above
δ∗ for case 1 modulation for parameter values R = 1.2 and
δ∗ = 0.216 349.

Shown in Fig. 6 are results for δ = 0.10 < δ∗.
Figure 6(a) depicts the evolution of multiple protrusions
advancing toward the colder sinusoidal boundary. The ver-
tical dashed lines (blue) represent those points of the initial
liquid film that are relatively cooler than adjacent regions
due to their proximity to the overhangs of the cold bound-
ary. After initial growth, several of the liquid protrusions
undergo binary coalescence, producing taller structures
whose tips on average no longer align with the dashed
lines since the coalesced shapes can no longer sustain the
pitch enforced by thermal modulation. Were the growth
process solely controlled by thermocapillary forces with-
out mitigation from capillary forces, then these tips would
advance in alignment with the vertical lines. The fact
that this does not occur reflects the inherent competition
between thermocapillary and capillary forces, which varies
in time. Figure 6(b) shows a plan view of the evolving film

thickness in (a). While, for τ < 0.10, the array appears
to be spatially periodic, uniformity is lost for τ > 0.10
whereupon numerous pairs of protrusions coalesce into
single taller protrusions with corresponding faster growth
than nearby formations. Such coalescence events lead to
final state array configurations that are highly nonuniform
and characterized by a larger average pitch than prescribed
by the modulation wavelength.

Figure 6(c) depicts time traces of the run in (a). After
initiation of film deformation, the system settles into a qua-
sisteady periodic state dominated by the Kext mode that
persists for some time. The curves labeled Kmax and Qmax
(fastest growing mode from coalescence events) indicate
corresponding results extracted from (e). This quasisteady
configuration represents the resonantlike state given by
Eq. (22). The formation of such a uniform, small amplitude
periodic state suggests that modulated thermocapillary pat-
terning of thin films offers a high-fidelity replication tech-
nique (provided the pattern can be solidified in situ during
this stationary period). The results in Fig. 6(c) indicate
that this state eventually becomes unstable to coalescence
events in response to interactions induced by a noisy ini-
tial condition and interference of the Kext and Qmax modes.
Once the majority of peaks have coalesced into pairs,
further growth is considerably restrained by the large vis-
cous stresses that develop in the interstitial regions due to
progressively more rapid thinning.

Shown in Fig. 6(d) are the values obtained from Eq. (54)
for the run in (a). The average results in Fig. 6(e) more
clearly highlight the broadband response with the devel-
opment of significant peaks at Qmax, Kext, and its higher
harmonics. These results, coupled with the modal curves
shown in (c), indicate that while the spectral coefficient
for Kext remains strong over time, there develops a com-
parable contribution from Qmax as well. Film coarsening
from coalescence, however, ultimately generates a final
state marked by considerable nonuniformity in peak height
and pitch.

Shown in Fig. 6(f) is a comparison of modal growth
rates extracted from the spectral analysis for 0.04 ≤ τ ≤
0.06 along with the predictions for �(Q, Kext) given
by Eq. (47) for a noise-free steady periodic base
state—see Sec. VII for a description of the input base
state Ho(X ). In this run [as in those in Figs. 8(f)
and 10(f) to be discussed later], the symmetry about
�/Kext = 0.50 reflects the periodicity of the underly-
ing Bloch wave in Eq. (46) that must satisfy HQ(X ) =
HQ(X + 1). The results confirm unstable growth for
0 < Q/Kext < 1.0, affirming the observed transition in (c)
from a quasisteady periodic state to a nonuniform final
state. The deviations between the eigenvalues �(Q, Kext)

and the spectral results underscore the influence of noisy
initial conditions. These deviations, which increase signif-
icantly as Q approaches Kext, evidence faster growth rates
than estimated from a noise-free initial condition.
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FIG. 6. Evolution dynamics for case 1 modulation with R = 1.2 and δ = 0.10 < δ∗ = 0.216 349 for colder boundary posi-
tion D(X ) = 5.0[1 + δ cos(KextX )], where Kext = 2π . Additional parameter values listed in Table VI along with selected times
shown. (a) Evolution of H(X , τ) for −32 ≤ X ≤ +32 (partial domain shown). (b) Plan view of structure formation in (a); color
map denotes magnitude H(X , τ). (c) Time traces of H(X , τ) at selected locations: dark curves (purple) signify values at Xi =
−7.5, −6.5, . . . , +6.5, +7.5; light curves (orange) signify values at Xi = −8.0, −7.0, −6.0, . . . , +6.0, +7.0, +8.0. (d) Results from
Eq. (54) for the run in (a)—inset shows the same results on a log-linear scale. Vertical dashed lines signify values Qmax/Kext = 0.5
(dashed green) and Kmax/Kext = 0.589 26 (dashed black). (e) Averaged results from Eq. (54) based on 50 independent runs initialized
by Eq. (50)—inset shows the same results on a log-linear scale. Curves Kmax, Kext, and Qmax in (c) represent averaged values extracted
from (e). (f) Modal growth rates �(Q/Kext) from Eq. (47) for a noise-free periodic state and from Eq. (54) initialized by Eq. (50) for
0.04 ≤ τ ≤ 0.06 [shaded region in (c)].

It has been previously reported that inclusion of stochas-
tic thermal noise into the thin-film equation describing
the competition between capillary and repulsive van der
Waals forces tends to generate fluctuations in film thick-
ness that accelerate dewetting [40]. While in our current
work we imprint white noise into the initial condition for
the film thickness (and not the thin-film equation nor the

boundary conditions), we too find that, under certain con-
ditions, noise accelerates the transition from equilibrium
periodic states at intermediate times to aperiodic states
at late times resulting from coalescence of some adjacent
protrusions. This behavior is especially pronounced near
values Q ≈ Kext where resonant wavelength excitations
likely promote such effects.
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FIG. 7. Evolution dynamics for case 1 modulation with R = 1.2 and δ = 0.25 > δ∗ = 0.216 349 for colder boundary posi-
tion D(X ) = 5.0[1 + δ cos(KextX )], where Kext = 2π . Additional parameter values listed in Table VI along with selected times
shown. (a) Evolution of H(X , τ) for −32 ≤ X ≤ +32 (partial domain shown). (b) Plan view of structure formation in (a); color
map denotes magnitude H(X , τ). (c) Time traces of H(X , τ) at selected locations: dark curves (purple) signify values at Xi =
−7.5, −6.5, . . . , +6.5, +7.5; light curves (orange) signify values at Xi = −8.0, −7.0, −6.0, . . . , +6.0, +7.0, +8.0. (d) Results from
Eq. (54) for the run in (a)—inset shows the same results on a log-linear scale. Vertical dashed line (black) denotes Kmax given by
Eq. (9). (e) Averaged results from Eq. (54) based on 50 independent runs initialized by Eq. (50)—inset shows the same results on a
log-linear scale. Curve Kext in (c) represents averaged values extracted from (e). (f) Modal growth rates β(K/Kext) from Eq. (20) for a
noise-free initial condition and from Eq. (54) initialized by Eq. (50) for 0 ≤ τ ≤ 0.005 [shaded region in (c)].

The behavior just described contrasts significantly with
that for δ = 0.25 > δ∗. As evident in Fig. 7(a), here the
profiles manifest rather perfect registration with the exter-
nally enforced pitch with strong uniformity in peak ampli-
tude and shape for all times. The liquid tips advance
in synchrony and align with the vertical dashed lines
denoting the coldest points of the initial liquid film. The
plan view in (b) highlights strong uniformity in growth
with no evidence of coalescence despite the noisy initial

condition. The corresponding time traces in Fig. 7(c)
neatly collapse onto two curves—the upper one show-
ing peak heights and the lower one the valleys between
peaks. The curve marked Kext exactly follows the evolu-
tion of peak heights. The film patterning process rapidly
approaches its asymptotic periodic configuration without
formation of any intermediate, small amplitude periodic
state nor subsequent coalesced state. Instead, the results
in Figs. 7(d) and 7(e) confirm growth dominated by Kext
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that is practically uninfluenced by noise, the effects of
which only become visible in the inset image. This exam-
ple shows that, for δ > δ∗ and R close to unity, thermal
modulation is very effective in synchronizing rapid growth
despite the presence of small amplitude noise in the initial
condition.

The results in Fig. 7(f) contrast modal growth values
from Eq. (20) for β(K/Kext) based on a noise-free initial
condition with results extracted from the spectral analy-
sis for 0 ≤ τ ≤ 0.005 based on a noisy initial condition.
The discrepancies in values increase with increasing K and
become significantly larger as K → Kext. Capillary forces
are therefore not as effective in suppressing thermocapil-
lary growth in thin films subject to a small degree of noise.
Once again, the influence of noise and resonant excita-
tion effects near Kext appears to increase instability growth
rates.

C. Case 1: larger amplitude modulation with
R = Kext/Kc = 2.0

The analyses in Secs. IV B and IV C apply only to sys-
tems in which the external forcing ratio R is close to unity
and the modulation amplitude δ much smaller than one.
The numerical simulations described next were therefore
conducted in order to explore modulation response beyond
restrictions of the weakly nonlinear analysis.

Shown in Fig. 8 are results for simulations conducted
with R = 2.0 and δ = 0.50. The evolution in (a) is similar
to that discussed Fig. 6(a)—both depict multiple protru-
sions advancing toward the colder sinusoidal boundary.
After initial growth, the majority of protrusions undergo
binary coalescence, producing taller structures whose tips
on average no longer align with the dashed lines since the
coalesced shapes can no longer sustain the pitch enforced
by the modulation. In this example, the final peak heights
are smaller than in Fig. 6(a) because the surface force ratio
M is about 2.8 times smaller in value—see Table VI. The
thermocapillary stresses promoting growth are therefore
relatively weaker. The plan view in (b) reveals the for-
mation of a quasisteady periodic state that persists for a
prolonged period of time before eventually giving way to
the instability causing coalescence events.

The time traces in Fig. 8(c) highlight the rapid onset and
persistence of a quasisteady periodic state, which closely
tracks the spectral coefficient of the Kext mode. There is
no significant contribution from mode Kmax. This quasis-
teady configuration represents the resonantlike state given
by Eq. (22). Eventually, the appearance and growth of the
unstable mode Qmax, which causes coalescence of adjacent
protrusions, dominates the Kext mode, which undergoes
progressive decay. This behavior is also evident from the
results in (d), which show the dominance of Kext at early
and intermediate times and that of Qmax at late times. By
contrast, the small contribution from Kmax at very early

times decays away rapidly. The averaged spectral response
in (e) highlight this exchange in modal response even more
clearly.

Shown in Fig. 8(f) is a comparison of modal growth
rates from the spectral analysis for 0.05 ≤ τ ≤ 0.10 with
the values �(Q, Kext) from Eq. (47) for a noise-free steady
periodic base state. [See the description near the end of
Sec. VI A justifying the choice of periodic input base
states Ho(X ).] The results confirm unstable growth for
0 < Q/Kext < 1.0, affirming the observed transition in (c)
from a quasisteady periodic state to a nonuniform final
state. The deviations between the eigenvalues �(Q, Kext)

and the spectral results underscore the influence of noisy
initial conditions. For wave numbers Q/Kext < 0.50, the
agreement is excellent, while for Q/Kext > 0.50, the dis-
agreement becomes substantial. As noted earlier, the com-
bined influence of noise and resonant excitation effects
near Kext appears to accelerate the instability growth rate
of the intermediate periodic state. Despite the fact that the
given choice for R and δ generate a fairly wide spread
in data for 0.50 < Q/Kext < 0.75, the mean values are in
fairly good agreement with Eq. (47). From a practical point
of view, these results confirm that the regular array pat-
terns representative of the long-lived periodic state must
be affixed in place before onset of the instability leading to
coalescence.

The results in Fig. 9 reflect the dynamical behavior for
even larger modulation amplitude δ = 0.65. The images
in Figs. 9(a)–9(c) evidence extremely rapid formation
of highly uniform periodic arrays over a time window
that is 2 orders of magnitude smaller than in previous
examples. This is mostly due to the fact that the liquid
protrusions here can only advance a small distance before
contacting the overhangs of the cooler boundary surface.
The time traces in Fig. 9(c) neatly collapse onto two
curves—the upper one representing peak heights and the
lower one the valleys between peaks. Although the Kext
mode closely tracks the evolution in peak heights, the dis-
crepancy between the two growth rates increases in time.
This is likely due to increased interference from growth of
the harmonic K/Kext = 2.0, which is evident in (d). This
observation is based on the comparison with the results in
Figs. 7(c) and 7(d), where there is no contribution from
higher harmonics of Kext and consequently excellent agree-
ment between the time traces of the peaks and the growth
of the spectral coefficient of the fundamental mode Kext.
Despite this slight mismatch with the pitch set by the
fundamental mode, it appears that the thermal modula-
tion is nonetheless able to corral fluid response into strong
registration with the spatial forcing despite a noisy initial
condition.

The results in Fig. 9(f) contrast modal growth values
from Eq. (20) for β(K/Kext) based on a noise-free ini-
tial condition with results from spectral analysis for 0 ≤
τ ≤ 0.0004 based on a noisy initial condition. The values
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FIG. 8. Evolution dynamics for case 1 modulation with R = 2.0 and δ = 0.50 for colder boundary position D(X ) = 5.0[1 +
δ cos(KextX )], where Kext = 2π . Additional parameter values listed in Table VI along with selected times shown. (a) Evolution of
H(X , τ) for −32 ≤ X ≤ +32 (partial domain shown). (b) Plan view of structure formation in (a); color map denotes magnitude
H(X , τ). (c) Time traces of H(X , τ) at selected locations: dark curves (purple) signify values at Xi = −7.5, −6.5, . . . , +6.5, +7.5;
light curves (orange) signify values at Xi = −8.0, −7.0, −6.0, . . . , +6.0, +7.0, +8.0. (d) Results from Eq. (54) for the run in (a)—inset
shows the same results on a log-linear scale. Vertical dashed lines signify the values Kmax/Kext = 0.353 55 (black) and Qmax/Kext = 0.5
(green). (e) Averaged results from Eq. (54) based on 50 independent runs initialized by Eq. (50)—inset shows the same results on a
log-linear scale. Curves Kmax, Kext, and Qmax in (c) represent averaged values extracted from (e). (f) Modal growth rates �(Q/Kext)

from Eq. (47) for a noise-free periodic state and from Eq. (54) initialized by Eq. (50) for 0.05 ≤ τ ≤ 0.10 [shaded region in (c)].

of β(K/Kext) are positive over the range 0 < K/Kext <

0.50, with a maximum near (K/Kext = 0.359 375 0, β =
8.108 475 2). There is substantial discrepancy between the
simulation results and Eq. (20), which increases signif-
icantly as Q approaches Kext. The results suggest that
the presence of white noise, likely enhanced by reso-
nant excitations near Kext, triggers amplification of modes
that would otherwise decay in time due to capillary
leveling.

D. Case 2: small to large amplitude modulation with
R = Kext/Kc = 3.0

As depicted in Fig. 2, modulation of the thermal field
can also be enforced with flat and parallel boundaries by
maintaining a spatially periodic temperature distribution
along the hotter or colder substrate. We discuss next a
couple of examples for case 2 modulation with �+ = 1 +
δ cos(KextX ). As before, we seek guidelines on imprint-
ing films with a finer pitch than accessible to unmodulated
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FIG. 9. Evolution dynamics for case 1 modulation with R = 2.0 and δ = 0.65 for colder boundary position D(X ) = 5.0[1 +
δ cos(KextX )], where Kext = 2π . Additional parameter values listed in Table VI along with selected times shown. (a) Evolution of
H(X , τ) for −32 ≤ X ≤ +32 (partial domain shown). (b) Plan view of structure formation in (a); color map denotes magnitude
H(X , τ). (c) Time traces of H(X , τ) at selected locations: dark curves (purple) signify values at Xi = −7.5, −6.5, . . . , +6.5, +7.5;
light curves (orange) signify values at Xi = −8.0, −7.0, −6.0, . . . , +6.0, +7.0, +8.0. (d) Results from Eq. (54) for the run in (a)—inset
shows the same results on a log-linear scale. Vertical dashed line (black) denotes Kmax given by Eq. (9). (e) Averaged results from
Eq. (54) based on 50 independent runs initialized by Eq. (50)—inset shows the same results on a log-linear scale. Curve Kext in (c)
represents averaged values extracted from (e). (f) Modal growth rates β(K/Kext) from Eq. (20) for a noise-free initial condition and
from Eq. (54) initialized by Eq. (50) for 0 ≤ τ ≤ 0.0004 [shaded region in (c)].

systems and here examine systems with R = Kext/Kc =
3.0 and δ = 0.10, 0.40. While the smaller value of δ falls
in line with the assumptions of the weakly nonlinear analy-
sis presented in Sec. IV B, the ratio R is too far from unity
for those predictions to hold.

Shown in Fig. 10 are results of simulations conducted
with R = 3.0 and δ = 0.10. The colored horizontal strip
shown at the bottom of the image in (a) depicts the periodic

thermal modulation of the warmer substrate—the dark-
est segments (red) and corresponding vertical dashed lines
signify the hottest points of the substrate. At early times,
the liquid film, now in direct contact with the modulated
boundary, undergoes rapid thinning in the vicinity of the
hottest points due to the thermocapillary effect, which
draws fluid away from the warmer and toward the cooler
regions. As time progresses, the majority of protrusions
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undergo coalescence to form fewer and taller peaks. The
final configuration resembles a highly irregular array with
significant nonuniformity in peak height, shape, and pitch.
The plan view in (b) and time traces in (c) illustrate more
clearly the immediate formation of a quasisteady periodic
state dominated by mode Kext that persists for a prolonged
period in time. The evolution time scales in this example
are about an order of magnitude larger than those in Figs. 6
and 7 since here M is about a factor 6.25 smaller—see
Table VI. The time traces and wave number curves in
Fig. 10(c) confirm that the intermediate time periodic state
and spectral coefficient of the Kext mode track closely
together in time. Eventually, the growth of the unstable
mode Qmax overcomes influence from the Kext mode that
undergoes continual decay. This behavior is also evident
from the results in (d), which show the dominance of Kext
at early and intermediate times and that of Qmax at late
times. The small contribution from Kmax at very early times
quickly decays away. The averaged spectral response in
(e) highlight this exchange in modal response even more
clearly.

The results in Fig. 10(f) show the modal growth rates
�(Q/Kext) from Eq. (47) for a noise-free periodic state
along with spectral results for 0.20 ≤ τ ≤ 0.40 initialized
by the noisy condition in Eq. (50). The growth rates are
everywhere positive over the entire range 0 < Q/Kext <

1.0, indicating that the quasisteady periodic state is unsta-
ble to coalescence events. Surprisingly, despite the pres-
ence of white noise, the agreement between the results of
the spectral analysis and Eq. (47) is remarkably good and
likely due to two reasons. The first is that the liquid film
is in direct contact with the thermally modulated bound-
ary, which affords more direct external control. In addition,
the ratio R is fairly large so as to suppress any effects
from underlying resonant excitations that occur for smaller
values of that ratio.

The behavior shown in Fig. 11 for δ = 0.40 contrasts
sharply with that in Fig. 10 for smaller modulation ampli-
tude. Despite the fact that the ratio M = 42.257 is much
smaller than in all the other examples shown in Figs. 5–9,
the fluid undergoes rapid formation of highly uniform
arrays with larger amplitude that are in excellent registry
with the externally prescribed pitch. The plan view in (b)
highlights the persistence of the array regularity, which, as
evident in Fig. 11(c), is controlled by the modulation wave
number Kext. The results in Figs. 11(d) and 11(e) indi-
cate dominance of the Kext mode with hardly any influence
from its higher harmonics and no indication of mode Kmax.
This example confirms that thermal modulation enforced
by direct contact of the film with the modulated boundary
allows superior control over the pitch and shape of the final
periodic state.

The results in Fig. 11(f) contrast the modal growth
rates for β(K/Kext) from Eq. (20) for a noise-free ini-
tial condition with results from spectral analysis for 0 ≤

τ ≤ 0.005 based on a noisy initial condition. The val-
ues β(K/Kext) are positive over the range 0 < K/Kext <

0.328 125, with a maximum near the point (K/Kext =
0.234 375, β = 1.603 239 6). The mean value from the
spectral analysis is in excellent agreement with the
theoretical estimate predicated on a noise-free initial
condition. These results indicate that the large value
of R = 3.0 prevents any resonant excitation effects
from setting in and allows capillary forces to dampen
growth rates at larger wave numbers, just as occurs
in the idealized analysis with noise-free initial condi-
tions.

E. Correlation between critical modulation amplitude
δ∗

num and R
In Sec. IV C, we derived the expression for Eq. (45)

[later simplified to Eq. (53)] for the critical modulation
amplitude δ∗(R). Those expressions are only valid in the
limit of small amplitude corrugations for which R → 1
from above. Below this critical value, the film adopts an
equilibrium periodic shape dominated by Kext that can per-
sist for some time but is ultimately unstable to coalescence
events. Above this value, the film immediately locks into
Kext and undergoes accelerated growth until contact with
one of the boundary substrates occurs. Here we present
results of numerical simulations for cases 1, 2 and 3 initial-
ized by a noise-free initial condition H(X , τ = 0) = 1.0
and restricted to a single period domain of length L = 1.
This restriction allowed numerical computation of the cor-
relation δ∗

num(R) based on ideal film shapes, i.e., shapes not
subject to noise-induced interference or coalescence. The
results are extracted from a bisection search of the mod-
ulation amplitude at fixed value R—unlike the analysis
leading to Eq. (45), these results are not limited to small
values of amplitude modulation. In this study, the simula-
tions are terminated when any point of the interface thins
to a value H = 0.01. By such time, evolution has slowed
substantially and film states manifest the saturated shapes
shown.

Shown in Fig. 12(a) is an example for case 1 modu-
lation with Do = 5 for R = 1.2. The critical modulation
amplitude is found to equal δ∗

num = 0.2016, slightly below
the estimate 0.2163 from Eq. (45). Below this value, the
asymptotic configurations H(X , τ → 1) assume interface
shapes situated well away from either solid boundary.
By contrast, values δ > 0.2016 generate asymptotic shapes
with a relatively flat depleted central region. Shown in
Fig. 12(b) are the numerical results δ∗

num for the system
in (a) for values R ranging from 1.0 to 4.0 along with
estimates predicted by Eq. (53). The excellent agreement
evident in the inset image as R → 1 confirms the validity
of the theoretical analysis.

Shown in Fig. 12(c) are results for δ∗
num obtained for four

examples of boundary thermal modulation and two values
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FIG. 10. Evolution dynamics for case 2 modulation with R = 3.0 and δ = 0.10 for thermal modulation of warmer bound-
ary temperature �+ = 1 + δ cos(KextX ), where Kext = 2π . Additional parameter values listed in Table VI along with selected
times shown. (a) Evolution of H(X , τj ) for −32 ≤ X ≤ +32 (partial domain shown). (b) Plan view of structure formation in (a);
color map denotes magnitude H(X , τ). (c) Time traces of H(X , τ) at selected locations: dark curves (purple) signify values at
Xi = −7.5, −6.5, . . . , +6.5, +7.5; light curves (orange) signify values at Xi = −8.0, −7.0, −6.0, . . . , +6.0, +7.0, +8.0. (d) Results
from Eq. (54) for the run in (a)—inset shows the same results on a log-linear scale. Vertical dashed lines signify Kmax/Kext = 0.235 70
(black) and Qmax/Kext = 0.365 (green). (e) Averaged results from Eq. (54) based on 50 independent runs initialized by Eq. (50)—inset
shows the same results on a log-linear scale. Curves Kmax, Kext, and Qmax in (c) represent averaged values extracted from (e). (f) Modal
growth rates �(Q/Kext) from Eq. (47) for a noise-free periodic state and from Eq. (54) initialized by Eq. (50) for 0.20 ≤ τ ≤ 0.40
[shaded region in (c)]. Error bars from multiple simulations are not visible since they are smaller than the marker diameter.

of average boundary separation distance Do. These include
case 1, 2, and 3 cosine modulation (see Fig. 2), and a case 1
system with a square well modulation. The results indicate
that, for larger values of Do, case 2 systems for R � 3.5
require much smaller values of the modulation amplitude
to produce final states with large aspect ratios. Smaller val-
ues of Do follow this trend only for small values of R.
For increasing values of R, however, case 1 systems with
square well modulation are favored instead.

VIII. SUMMARY AND CONCLUDING REMARKS

The thin-film systems examined in this work are based
on thermocapillary flow in which regions of a liquid layer
that are slightly thicker than neighboring regions experi-
ence faster growth than lower-lying regions. In unmodu-
lated systems, analysis and simulations based on an intrin-
sic long-wavelength instability predict growth of a periodic
array of protrusions that continually advance toward a
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FIG. 11. Evolution dynamics for case 2 modulation with R = 3.0 and δ = 0.40 for thermal modulation of warmer bound-
ary temperature �+ = 1 + δ cos(KextX ), where Kext = 2π . Additional parameter values listed in Table VI along with selected
times shown. (a) Evolution of H(X , τj ) for −32 ≤ X ≤ +32 (partial domain shown). (b) Plan view of structure formation in (a);
color map denotes magnitude H(X , τ). (c) Time traces of H(X , τ) at selected locations: dark curves (purple) signify values at
Xi = −7.5, −6.5, . . . , +6.5, +7.5; light curves (orange) signify values at Xi = −8.0, −7.0, −6.0, . . . , +6.0, +7.0, +8.0. (d) Results
from Eq. (54) for the run in (a)—inset shows the same results on a log-linear scale. Vertical dashed line denotes Kmax/Kext = 0.235 70
(black). (e) Averaged results from Eq. (54) based on 50 independent runs initialized by Eq. (50)—inset shows the same results on a
log-linear scale. Curve Kext in (c) represents averaged values extracted from (e). (f) Modal growth rates β(K/Kext) from Eq. (20) for a
noise-free initial condition and from Eq. (54) initialized by Eq. (50) for 0 ≤ τ ≤ 0.005 [shaded region in (c)].

cooler substrate with a fixed pitch set by the most unstable
wavelength. However, even a very small degree of noise,
which in this study is imprinted onto the initial condition
for the film profile, causes highly asynchronous and disor-
dered growth with short-range order at best. Since noise is
ubiquitous, we conclude that sole reliance on this intrinsic
instability as a lithographic method for generating uniform
microarray patterns is unlikely ever to succeed.

It is shown, however, that even in the presence of
noisy initial conditions, augmentation of the flow process

by spatially periodic boundary thermal modulation can
successfully induce synchronous growth of highly uni-
form protrusion arrays. For comparable parameter val-
ues, these arrays not only form much more rapidly but
can be designed to have a finer pitch than accessible
to unmodulated systems. A comprehensive study of the
spatiotemporal dynamics in modulated systems reveals
how the thermal modulation amplitude and spatial fre-
quency induce resonant wavelength excitations that sustain
wave locking with the modulation field.
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FIG. 12. Influence of boundary modulation amplitude and
wave-number ratio R on saturated film shapes as τ → 1. (a) Sat-
urated film shapes for increasing values δ∗

num for a case 1 system
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in (a) plotted alongside estimates from Eq. (53). (c) Results for
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num(R) for four examples of boundary thermal modulation and
two values of the average boundary separation distance Do.

For given ratios R = Kext/Kc > 1, we show that there
exists a critical value of the modulation amplitude that dis-
tinguishes between two types of saturated periodic states.
Below the critical value, a flat film with very small surface
roughness modeled by white noise evolves at intermedi-
ate times into a highly uniform array with small amplitude
periodic protrusions and a pitch that closely matches the
prescribed pitch 2π/Kext. The supporting analysis and
numerical simulations reveal that these saturated states
can persist for long periods of time. During this extended

period, such arrays can be solidified in situ by electronic
means to yield extended films ideally suited to microlens
applications. Eventually, these states destabilize and tran-
sition to nonuniform configurations characterized by irreg-
ular coalescence of some adjacent protrusions. The coales-
cence process ultimately causes significant nonuniformity
in element shape and an average local pitch larger than
prescribed by modulation. Fabrication of highly uniform
arrays requires only that the evolution process be termi-
nated sometime prior to onset of any coalescence event.

Above the critical modulation amplitude, a flat film with
very small amplitude surface roughness modeled by white
noise undergoes immediate wave locking with the mod-
ulation spatial frequency to generate highly synchronous
growth with pitch 2π/Kext. In this case, the system does not
settle into any intermediate small amplitude state; instead,
the periodic protrusions advance very rapidly and in per-
fect unison toward the cooler substrate until contact is
achieved, if so desired. For some parameter values, the
peak heights can become so large that further growth is
only stymied by the constraint of constant volume. In this
case, fluid redistribution from the thin warmer regions to
the thicker cooler regions of the film then significantly
slows due to development of large frictional forces (i.e.,
viscous stresses) in the interstitial segments. In this regime,
fabrication of highly uniform arrays can be terminated
electronically at any time during the evolution process,
depending on the aspect ratio desired.

These findings offer a compelling solution to the cur-
rent dilemma of lithographic patterning of thin films based
solely on pattern generation from an intrinsic instability.
Despite the highly nonlinear character of the governing
evolution equation, implementation of spatially periodic
thermal modulation allows resonant wavelength excita-
tions to synchronize rapid growth of an array even in the
presence of noise. The process leads to highly uniform
microarrays with an even finer pitch than in comparable
unmodulated systems. We anticipate that the approach out-
lined in this work will resolve similar challenges currently
encountered with other lithographic techniques that rely on
hydrodynamic instabilities in ultrathin films.
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