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Liquid-metal ion sources (LMIS) are widely used for ion implantation in semiconductors, focused ion-
beam systems for lithographic patterning and now even small in-space thruster units for precision pointing.
Above a critical field strength, a liquid metal just prior to ion emission forms a conical protrusion, which
undergoes accelerated sharpening of the tip due to field self-enhancement. Despite decades of interest in
this phenomenon, the influence of inertial effects on the shape and flow field prior to emission remain
poorly understood. Zubarev [Formation of conic cusps at the surface of liquid metal in electric field, JETP
Lett. 73, 544 (2001)] showed that when local Maxwell and capillary forces prevail at an electrified tip of
a perfectly conducting liquid in inviscid flow, the asymptotic behavior of the potential fields and inter-
face shape far from the tip can be described by a one-parameter family of self-similar series solutions
describing a dynamic Taylor cone with radially convergent flow toward the tip. The Maxwell and capil-
lary pressure undergo divergent growth in finite time, characteristic of blowup phenomena in self-focusing
singularity flows. Suvorov and Zubarev [Formation of the Taylor cone on the surface of liquid metal in
the presence of an electric field, J. Phys. D: Appl. Phys. 37, 289 (2004)] later found solutions that retained
inertial effects and showed that the self-focusing, divergent dynamics leading to power-law growth are
preserved. In this work, we focus especially on the influence of inertial effects and extend the analysis to
include time-reversal symmetry. We provide an interweaved procedure for calculating the coefficients of
the series expansions for the potential fields and interface shape and use these to deduce a compact relation
for bounds on the minimum and maximum liquid apex height achievable. We then develop a boundary
integral patching technique, which yields the complete self-similar solution, valid throughout the near-
and far-field domain. The resulting two-parameter family of numerical solutions reveals a multiplicity of
fluid configurations, which we coin subconical, superconical, and mixed conical, that exhibit not only tip
sharpening but tip bulging, tip separation flow, interface stagnation points, and receding shapes reminis-
cent of recoil after capillary pinchoff. The existence of such multiple configurations may ultimately help
explain experimental observations during LMIS operation involving tip pulsation, droplet emission, liquid
recoil and collapse.

DOI: 10.1103/PhysRevApplied.15.044001

I. INTRODUCTION

The strong surface distortion accompanying electrically
stressed liquids has fascinated researchers for centuries
dating back to experiments in the early 1600s by Gilbert
[1], who reported emission of a fine jet of liquid when
water was attracted to a highly charged piece of amber,
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glass, or thread. More than a century later, Gray [2] doc-
umented similar behavior in quicksilver, the liquid metal
now known as mercury. The development of the equa-
tions of classical electromagnetism during the 18th and
19th century by such luminaries as Lagrange, Gauss, and
Maxwell eventually provided the mathematical framework
for quantifying the forces responsible for such interface
distortion.

Lord Rayleigh demonstrated in 1884 why a spheri-
cally charged droplet is unstable to small surface distortion
whenever the destabilizing Maxwell pressure (i.e., electri-
cal pressure) due to Coulomb repulsion of surface charges
exceeds the stabilizing influence of capillary pressure.
The analysis revealed that above a critical value of the
surface charge (or equivalently, the electric field strength),
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a charged drop is in a state of unstable equilibrium and will
undergo ejection of one or more slender jets. Several years
later, Larmor [3] set out to quantify the effect of surface
charge on the propagation of capillary waves on a deep
layer of fluid. Using the unsteady form of the inviscid sur-
face Bernoulli equation and noting that the presence of a
surface charge diminishes the surface pressure, he derived
the velocity of propagation of capillary waves along an
electrified interface. The result indicated that the pres-
ence of surface charge is mathematically equivalent to a
reduction in the surface tension by 4σ 2λ where σ is the
electric charge surface density and λ the surface undulation
wavelength. These two early studies were instrumental in
launching the field of electrohydrodynamics, which cou-
ples the nonlinear system of equations describing fluid
flow with Maxwell’s equations.

Over the centuries, physicists have explored a wealth
of related phenomena and over time have established key
differences in response between perfect conducting, per-
fectly insulating, and so-called leaky dielectric liquids, the
influence of surface kinetic energy on protrusion shapes,
conditions required for liquid-jet initiation, liquid-thread
breakup and progeny droplet formation, and more. The
advent of high-resolution imaging techniques such as high-
vacuum transmission electron microscopy (HV TEM) is
also helping researchers examine in more depth the cus-
plike formations in liquid-metal alloys prior and during
ion emission. A particularly noteworthy feature of the
dynamical process became evident during the last two
decades through the work of Zubarev and colleagues [4–6]
who demonstrated by asymptotic analysis that field self-
enhancement near the tip of an electrified protrusion pro-
gresses through a runaway process controlled not by the
external field but the local field at the liquid tip. This
work revealed so-called self-similar blowup in finite time
leading to accelerated divergence of the local Maxwell
(electric), capillary, and kinetic pressure, which presum-
ably culminates in such high electric field strengths that
ion emission is triggered.

The complexity of the underlying coupled set of non-
linear equations are not amenable to analytic solution
except in certain asymptotic limits. Zubarev determined
the asymptotic form of the electric potential, velocity
potential, and interface shape applicable to distances far
from the tip apex for an inviscid, perfectly conducting liq-
uid and demonstrated power-law divergence in finite time
of the surface pressure, a characteristic of blowup phe-
nomena in self-focusing singularity flows. In what follows,
we first review in Sec. II key studies of the 20th century,
which established principles necessary to the understand-
ing of such phenomena and helped differentiate systems of
interest. We provide there estimates showing why liquid
metals are well described as perfectly conducting fluids
and discuss the validity of the inviscid approximation in
examining the dynamic behavior of an electrified liquid

metal. In Sec. III B, we outline the original electrohydrody-
namic analysis based on the surface Bernoulli equation by
Zubarev, which reveals a one-parameter family of asymp-
totic self-similar solutions for the potential functions and
interface shape. We show why these solutions capture
only flow configurations for which the surface kinetic
energy per unit volume is negligible in comparison to the
Maxwell and capillary pressure. In Sec. IV, the analysis is
extended to include explicitly the kinetic energy term and
augmented to allow for time reversal symmetry for cap-
turing solutions beyond the so-called blowup point. This
leads to a two-parameter family of asymptotic self-similar
solutions which expand allowable flow configurations to
include subconical, superconical, and mixed-conical inter-
face shapes. We provide an interweaved procedure for
calculating the coefficients of the series expansions for the
velocity potential, electric potential and interface function
and use these expressions to deduce a compact relation
for bounds on the minimum and maximum liquid height
possible. In Sec. V, we provide the complete self-similar
solutions, valid throughout the near and far field from the
liquid tip, obtained by a boundary integral patching tech-
nique, which directly incorporates the asymptotic solutions
into the formulation.

II. BACKGROUND

A. Important early studies

In the century that followed the work of Rayleigh and
Larmor, significant advances in understanding became
possible through the beautiful and insightful experiments
by Zeleny from 1914–1920. His work produced not only
stunning images but key information about the critical field
strengths needed to initiate ejection of a fine charged spray,
which he obtained by an elegant measurement technique
based on hydrostatic force balance [7–10]. He developed a
number of visualization methods for capturing the distor-
tion and emission process in small hemispherical droplets
protruding from the end of a fine capillary when exposed
to field strengths of the order of a MV/m. Using liquids
such as water, alcohol, dilute solutions of hydrochloric acid
or carbonic acid, and capillaries of different radii made of
glass or metal, he was able to capture a variety of phenom-
ena. His images revealed that above a critical field strength,
the apex of a hemispherical droplet deformed into a cusp-
like shape and spontaneous emission of a fine liquid thread,
which fragmented into a spray of minute droplets. He
also observed tip pulsation, thread whipping motion, liquid
recoil and collapse. He commented that behavior in such
liquids—now called leaky dielectric liquids (i.e., liquids
with finite conductivity)—stood in contrast to his studies
with liquid mercury showing rather stable current emission
presumably from an ion current. Many experimentalists
using aqueous droplets and even aqueous soap solutions
[11–15] confirmed similar wide-ranging behavior.
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Zeleny also derived a stability criterion for the criti-
cal surface charge or critical field strength of an isolated
ellipsoidal droplet with constant surface charge. This cri-
terion was based on the fact that the first derivative of
the sum of the normal pressures acting on the interface
with respect to a coordinate specifying the liquid shape
must vanish at an unstable point on the surface. His result
reduced exactly to the Rayleigh criterion for a spheri-
cal liquid droplet. In a comprehensive paper written in
1935, he concluded that the magnitude of the field strength
for emission was in line with his prediction. However,
measurement techniques at the time lacked the resolution
required to determine whether the field strength at the point
of discharge is the same as that required to initiate protru-
sion growth, an issue still under investigation today. While
most of these early studies involved aqueous ionic liq-
uids, researchers like Beams and Quarles [16,17] began
focusing on liquid metals such as liquid mercury to bet-
ter understand differences in behavior. They attempted to
measure more accurately the critical field strength required
for ion emission by varying the externally applied voltage
while trying to present large-scale distortion or movement
of the liquid. To do so, they applied impulsive fields of
the order of 107 V/m of short duration times 10−7–10−6 s.
These studies helped catalog estimates of the work func-
tion required for electron emission but could not shed
light on the distorted shapes or field values generated just
prior to ion emission. (When liquid metals are positively
biased, they emit ions and when negatively biased generate
electrons.)

By 1935, experimentalists had documented a wealth
of phenomena accompanying the distortion of electrified
stressed liquids subject to high field strengths. Tonks [18],
a plasma physicist working at General Electric Company,
was most intrigued by the fact that surface distortion
and rupture leading to charge emission in liquid metals
required far smaller values of the applied field strength
than equally smooth solid metal surfaces. After careful re-
examination of key studies by Zeleny and others [7–15],
Tonks quickly set about developing a dynamic model
based on the accelerated pressure imbalance of a small
hemispherical protrusion in an otherwise planar, perfectly
conducting liquid subject to a critically large uniform elec-
tric field. Tonk’s analysis yielded a key relation between
the amplitude of the initial liquid distortion to the so-called
rupture time and field strength, which for liquid mercury
he estimated to be 53 kV/cm. He predicted that the linear
dimensions of an evolving protrusion will therefore vary
inversely as the square of the field strength and the time to
rupture will vary inversely as the cube of the field strength.
From this, he estimated that a hemispherical bump of liq-
uid mercury with an initial maximum height of 0.4 μm and
a radius of 9 μm subject to an initial uniform field of 108

V/m will sharpen in time and undergo surface rupture in
just 5.4 μs.

Realizing that a rigorous analytic solution to such a
complex electrohydrodynamic (EHD) problem was too
formidable a task, Tonks instead relied on an insightful
approximate treatment of an electrified perfectly conduct-
ing liquid that revealed critical aspects of the distortion
runaway process at late time. Tonks focused on the dynam-
ics of a single liquid protrusion and developed an equation
of motion based on conservation of momentum relating
the local acceleration rate at the liquid apex to the degree
of eccentricity of the sharpening interface. The analysis
revealed that beyond a critical field strength, the fluid pres-
sure at the conical apex cannot maintain an equilibrium
state since the Maxwell pressure increases as the square
of the apex height while stabilizing forces due to capillary
or gravitational pressure at most scale inversely or linearly
with apex height, respectively. His model established then
that any small advance of an electrified liquid tip will con-
tinue to grow in length and narrow in width without bound
until the point of emission is reached, due to accelerated
growth in the unbalanced pressure at the conical tip.

He realized, correctly so, that the accelerating imbalance
causes a runaway process from field self-enhancement
driven by the shrinking radius of curvature of the elec-
trified tip. This insight led him to the realization that the
growth of the liquid tip should proceed in self-similar
fashion, which he deftly portrayed through hand-drawn
sketches in Fig. 8 of Ref. [18] showing self-similar growth
of a small liquid bump in time. Shortly after publication of
this work, Frenkel [19] offered a different perspective on
the problem based on a hydrodynamic and not mechani-
cal approach. He assumed the existence of an initially long
and flat liquid layer able to sustain multiple periodic pro-
trusions and from the inviscid surface Bernoulli equation
derived a dispersion relation for the speed of electrified
capillary waves. The wave speed was found to vanish at
the exact same critical field strength in Tonks’ analysis
required for accelerated growth of a bump. The fact that
the condition for the instability of an electrified liquid sur-
face reduces to the vanishing of the wave speed seemed
at first surprising. Frenkel explained that this condition
corresponds to the field strength at which the wave veloc-
ity and wavelength both become imaginary, which in the
analysis then reduces to a wave amplitude that increases
in time. The well-known instability describing periodic
distortion of the surface of a perfectly conducting liq-
uid above a critical field strength is now known as the
Larmor-Tonks-Frenkel instability.

B. Hydrostatic Taylor cone and subsequent studies by
Miscovsky and co-workers

In 1964, Taylor [20] decided to revisit Zeleny’s crite-
rion [8] for the condition required for the stability of an
isolated charged ellipsoidal droplet. Taylor somehow mis-
interpreted Zeleny’s analysis and mistakenly believed that
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the derivation required the gauge pressure to vanish at
instability. He then argued that a gauge pressure depen-
dent on position was required for instability, which in fact
Zeleny had emphasized in his work. Taylor was aware
from experiments of his own and others that spray emis-
sion tended to ensue immediately after protrusion growth
without having to increase the applied field strength. He
also knew from images obtained just prior or during liq-
uid emission that an electrified tip tends to adopt a conical
shape from whose apex a jet was discharged. He was
intrigued by this particular geometric feature and won-
dered what geometric shape would an infinite mass of liq-
uid in hydrostatic equilibrium have to adopt in order for the
negative Maxwell pressure to cancel the positive capillary
pressure everywhere on its surface. He found that such a
perfect balance was indeed possible for the shape given by
a static liquid cone with interior half-angle θT ∼= 49.2923◦,
now known as the Taylor angle. This solution required
however a curved counter electrode forming a coordinate
surface with radius r = ro[P1/2(cos θ)]−2, where ro denotes
the central distance to the liquid surface and P1/2 is the
Legendre function of the first kind with index 1/2. Taylor
did not remark on the fact that the Maxwell and capillary
pressure diverge to infinity at the conical singularity point,
although he surely realized that such divergence rendered
a state of unstable equilibrium. Unfortunately, this sim-
ple exercise in electrostatics led to considerable subsequent
confusion in the field and the incorrect notion that an elec-
trified conical tip represents a state of static equilibrium.
Researchers unfamiliar with Tonks’ work tended therefore
to neglect the influence of inertial forces during the late
stages of tip sharpening. This misconception, which some-
times appears in the modern literature as well, is based on
neglect of the dynamic response of the liquid to the electric
stress.

By the early 1980s, researchers began using varia-
tional analysis to determine whether certain liquid and
counter electrode shapes might allow stable equilibrium
configurations. In 1983, Miscovsky and co-workers [21]
demonstrated that a static mass of perfectly conducting
fluid in the shape of a Taylor cone, or a cone with any
angle for that matter, is inconsistent with a variational
formulation of the equilibrium problem. They traced the
problem to two issues with Taylor’s analysis: neglect of
the fluid pressure and truncation of the Legendre expan-
sion for the electrostatic potential to the first term (P1/2).
Using a similar variational approach, Chung et al. [22]
later demonstrated that even an ideal cuspidal shape is
incompatible with the variational formulation. In another
study [23], they reported yet another problem with Tay-
lor’s analysis, namely that the field-strength criterion for
static equilibrium he derived, if also considered the tip-
ping point for instability, would imply the existence of a
global and not a local condition. Therefore, such an insta-
bility should occur simultaneously across the entire surface

of the cone, an assumption at odds with experimental
observations showing emission from a single point. To
resolve these and other issues with the Taylor analysis,
Chung et al. [23] formulated the problem in terms of the
time-dependent inviscid surface Bernoulli equation cou-
pled to the requisite potential field equations and boundary
conditions, which gives rise to a set of nonlinear equations
not generally amenable to analytic solution. They did not
provide any details of the analysis or solution until a couple
of years later [24].

During this period, they devoted their efforts to formu-
lating stability criteria based both on an electrohydrostatic
(EHS) approach and an EHD analysis. The EHS analysis
[25], which assumed static equilibrium over the entire sur-
face of a fluid whose interface is described by coordinate
surfaces of a cone, cusp, or a pointed hyperboloid of revo-
lution. Using the Zeleny criterion for instability, based on a
vanishing first variation in the sum of the normal stresses,
they showed that the variation does not vanish but in fact
diverges at the apices of such shapes. The conclusion from
that study was that a static Taylor cone is an unstable
configuration whose apex is likely to disintegrate sponta-
neously. They used the word “disintegrate” in reference to
Taylor’s original description of droplet distortion accom-
panied by the formation of a pointed end, which discharges
small droplets or ions [20].

Their EHD analysis relied on a time-dependent, unbal-
anced rate of change in the net fluid pressure to drive
fluid flow. Their first attempt at a rigorous calculation [23]
valid to first order was restricted to long wavelength distur-
bances acting on a static Taylor cone. The results showed
that the tip of a Taylor cone should rapidly deform into
a concave shape with a rounded apex and progressive tip
sharpening under perturbation from an external electric
field. In subsequent work [24,26], they appealed to the
full Navier-Stokes equation and carried out a linear sta-
bility analysis to derive an expression for the amplification
of surface capillary waves in a viscous fluid valid for all
wavelength disturbances.

In the years that followed, Driesel and co-workers
[27–29] were able to successfully modify a 1-MeV HV
TEM to allow in situ observation of electrified tip shapes
as a function of increasing ion-emission current in vari-
ous liquid metals and alloys. These high-resolution images
revealed details never before seen within just a few
microns of the apex just prior and subsequent to ion
emission. Aware of Tonks’ earlier hypothesis of runaway
growth at an electrified tip and armed with intuition gained
from these images, a researcher in the Soviet Union by the
name of Zubarev [4] made a key contribution to the field.
His work established that tip field self-enhancement is in
fact driven by a self-similar runaway process leading to
blowup in finite time. We shall outline the details of his
analysis in Sec. III but first address two assumptions of the
model.
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C. Tip shapes: Perfect conductors or dielectrics versus
leaky dielectrics

Recent numerical simulations have revealed in detail
why the tip shapes of electrified liquids modeled as per-
fectly conducting or insulating (i.e., perfect dielectrics)
differ significantly from those in leaky dielectric liquids
characterized by a finite conductivity [30]. The difference
in flow behavior and tip shape is directly related to the dif-
ference in time scale for charge relaxation [31], τcharge =
εoεliq/σliq and fluid flow, τflow = (ε

3/2
o /γρ1/2)˜E3

o [from Eq.
(9b)]. Here, εliq and σliq denote the liquid dielectric con-
stant and conductivity, εo ≈ 8.854 × 10−12 C2/N m2 is the
vacuum permittivity constant, γ and ρ denote the liquid
surface tension and density, and ˜Eo denotes some charac-
teristic electric field strength. For a typical liquid metal like
indium [32] used in LMIS systems, γ = 0.556 N/m, ρ =
7.03 × 103 kg/m3, σliq = 3.2 × 106 S/m (Ref. [33]), and
εliq ≈ 40 (Ref. [34]). For typical initial operating voltages
of about 4 × 107 V/m, the ratio τcharge/τflow ∼ O(10−20).
A liquid metal is therefore well modeled as a perfectly
conducting liquid in which charge relaxation is instanta-
neous in comparison to any flow time scale. By contrast,
the charge relaxation time for a semi-insulating liquid like
corn oil is about one second [31].

Recent simulations and experiments [30,35,36] have
shed further light on this distinction and helped elucidate
which types of liquids allow and which forbid forma-
tion of progeny droplets from an electrified tip. Liquids
with finite conductivity allow surface charge transport and
redistribution on time scales comparable to the flow, which
in turn generates surface tangential stresses leading to
EHD tip streaming [30]. Tip streaming describes a process
whereby a fluid tip elongates into a very slender filament
prone to capillary breakup and droplet detachment. By
contrast, perfectly conducting or insulating liquids, which
can only sustain electric fields oriented in the direction
normal to the interface, can only develop a sharpened tip
from whose apex an ion beam is discharged. In the absence
of any surface oxidation effects or surface contamination,
molten metals cannot support tip streaming and therefore
no progeny droplet formation resulting from breakup of a
liquid thread.

Shown in Fig. 1(a) is a high-resolution image of the
tip of a AuGe liquid alloy droplet undergoing ion emims-
sion obtained in situ by HV TEM. Shown in Fig. 1(b)
is a recent scanning electron micrograph of the sur-
face of molten indium after exposure to an extremely
large field gradient of the order of 100 MV/m and
subsequent solidification. The latter formations are cur-
rently of great concern due to their suspected role
in causing breakdown of accelerators such as the 30-
GHz Compact Linear Collider at CERN. Researchers
are actively seeking alternative fabrication and condi-
tioning processes better suited to extreme environments

(a)

(b)

FIG. 1. (a) High-voltage (1 MeV) transmission electron micro-
graph of a conical protrusion in molten AuGe undergoing ion
emission (45 μA). Reproduced with permission from Fig. 6(b) of
Ref. [27]. (b) Scanning electron micrograph imaged after solidi-
fication showing numerous protrusions in an electrically stressed
sample of molten titanium. The formations resulted from expo-
sure of molten titanium to large electric field gradients in the
hybrid damped rf structures within the 30-GHz Compact Linear
Collider at CERN. The surface rf fields, estimated to be roughly
95–135 MV/m, are applied for a duration of 70 ns every 20 ms.
Reproduced with permission from Fig. 9 of Ref. [37].

involving very high accelerating gradients such as in rf
structures.

D. Validity of the inviscid approximation for liquid
metals

All the analysis in this current work is based on the
inviscid form of the Bernoulli equation for quantifying the
dynamic behavior of liquid metals prior to ion emission.
One may ask whether the inviscid approximation is well
justified in this case. The following back of the envelope
estimate offers good support for this approach. As is well
known, an initially quiescent liquid can only generate vor-
ticity through boundary motion [38]. For the problem at
hand, vorticity generated both by interface curvature and
acceleration diffuses into the bulk liquid through viscous
stresses initially confined within a viscous boundary layer
whose thickness is of the order of μ2/ργ , where μ is the
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shear viscosity. For liquid metals [32], the viscous bound-
ary layer is estimated to be extremely small, of the order of
ten nanometers. Also, conical formations are observed to
form almost immediately after exposure to a large electric
field, with ion emission occurring within a few nanosec-
onds to microseconds after startup. This allows little time
for surface vorticity to penetrate any significant distance
within the bulk. Given these estimates then, it is antici-
pated that the EHD process is well modeled by inviscid
flow.

III. ZUBAREV PREDICTION OF SELF-SIMILAR
CONICAL GROWTH

In this section we outline and then assess the implica-
tions of the original analysis by Zubarev [4], a leading
physicist in the Nonlinear Dynamics Group at the Institute
of Electrophysics of the Russian Academy of Sciences.
Unlike the many previous studies that viewed the tip-
growth process as an instability, he instead focused on
formulation of the late time dynamical behavior of an elec-
trified tip in a liquid metal just prior to ion emission. His
main interest was whether the liquid apex undergoes self-
similar growth leading to a runaway process and eventual
blowup in finite time.

Any self-similar process requires that local and not
global conditions prevail in the region of interest and that
the process allow self-replicating behavior at smaller and
smaller scales until there is breakdown due to critical con-
ditions and intervention of another physical mechanism.
Zubarev therefore replaced the usual external field unifor-
mity condition in the electrodynamic formulation of the
problem with a decay condition specifying vanishing field
strength far from the liquid tip. He reasoned correctly that
the local electric field strength in the apical region of a liq-
uid tip is expectedly to exceed the external value, rapidly
and appreciably, if local conditions prevail. This insight
allowed him to analyze fluid motion near the apex with-
out reference to any particular electrode geometry. Scaling
of the governing EHD equations under dilation revealed a
set of self-similar transformations amenable to asymptotic
analysis. He demonstrated that in the laboratory frame, the
asymptotic solutions exhibit finite-time blowup wherein
the Maxwell and capillary pressure undergo divergence to
infinity, a process directly related to the diminishing radius
of curvature of the liquid tip. We review Zubarev’s original
approach in detail below [39].

A. Notational symbols

To keep track of the notation in this work, we note
that vector and tensor quantities are indicated by bold-face
variables and partial differentiation by subscripts. Dimen-
sional variables are designated by lowercase Roman or
Greek letters decorated by a tilde, e.g., surface velocity
potential ψ̃ (̃r, t̃). Dimensionless variables are designated

by uppercase Roman or Greek letters, e.g., 
(R, T) and
dimensionless self-similar variables by lower-case Roman
or Greek letters, e.g., ψ(r, z). The exception to these rules
is the electric field distribution denoted by ˜E in dimen-
sional form and E in dimensionless form. Unit normal
vectors on boundaries point outward from the volume of
interest. In this study, it is assumed that the system mani-
fests axisymmetry about the central vertical axis. As such,
it proves convenient to introduce both cylindrical coor-
dinates (r, z) and spherical coordinates (r, θ), depending
on the form of the expressions desired. Projected lengths
along the central axis of symmetry are therefore given by
z = r cos θ , which can be a negative value. In switching
between coordinate systems as needed, we caution that the
symbol r denotes the radial coordinate in spherical coor-
dinates and r denotes the radial coordinate in cylindrical
coordinates.

B. Asymptotic one-parameter family of inertialess
self-similar solutions

Here we review and expand on Zubarev’s analysis for
an electrically stressed axisymmetric protrusion emanat-
ing from a perfectly conducting fluid in vacuo subject to
incompressible, inviscid and irrotational flow. In a per-
fectly conducting liquid with no net charge, all mobile
charges reside on the liquid interface and rearrange instan-
taneously (in comparison to the time scale for fluid motion)
to maintain the liquid mass at constant electric potential
ψ . The interior liquid domain therefore defines a Gaus-
sian volume devoid of an electric field. Consequently, the
electric field at the surface of the liquid can only sustain
a normal component, ˜Eñ, which we everywhere simply
designate by ˜E. Assuming all boundaries except that of
the moving liquid are held stationary, the electric poten-
tial distribution in the vacuum domain varies in time only
in response to the instantaneous location and shape of
the moving liquid surface. (For an isolated charged liquid
mass, the electric potential distribution depends only on the
shape of the liquid.) The difference in the corresponding
electric field distribution across the liquid-vacuum inter-
face then gives rise to a jump in the Maxwell stress tensor
˜E˜ET − |˜E|2 I/2, which causes a jump in the electrostatic
pressure [40] given by −εo˜E

2
/2. The negative sign reflects

the fact that the net interfacial electrical stress acts to pull
liquid toward the vacuum region. Setting the gauge pres-
sure in the vacuum to be zero, the total pressure acting on
the fluid interface p̃int is

p̃int(r̃, t) = −2γ ˜H − 1
2
εo|˜E|2, (1)

where the mean curvature in dimensional units is defined
by ˜H = −(˜∇ · ñ)/2. We note that this expression for the
interfacial pressure can also be obtained from the first
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variation in shape for a liquid volume whose energy is
exclusively governed by electrostatic and capillary forces
[41].

The electric field distribution ˜E in the vacuum domain
and along the moving interface z̃ = h̃(r̃, z̃, t̃) is obtained
from the gradient of the electric potential ˜ψ(r̃, z̃, t̃) and
must satisfy

˜E = −˜∇˜φ(r̃, z̃, t̃) (2)

˜∇ ·˜E(r̃, z̃, t̃) = 0 (3)

˜∇2
˜φ = ˜φr̃r̃ +

˜φr̃

r̃
+ ˜φz̃z̃ = 0 z̃ ≥ h̃(r̃, t̃). (4)

Likewise, for an ideal liquid subject to incompressible
(˜∇ · ũ = 0) and irrotational (˜∇ × ũ = 0) flow, the velocity
field ũ in the liquid domain and along the moving inter-
face is obtained from the gradient of the velocity potential
˜ψ(r̃, z̃, t̃) and must satisfy

ũ = (ũ, w̃, t̃) = ˜∇ψ̃(r̃, z̃, t̃), (5)

˜∇ · ũ(r̃, z̃, t̃) = 0, (6)

˜∇2
˜ψ = ˜ψr̃r̃ +

˜ψ̃r

r̃
+ ψ̃z̃z̃ = 0 z̃ ≤ h̃(r̃, t̃). (7)

The unsteady form of the inviscid Bernoulli equation
evaluated at the free surface z̃ = h̃(r̃, t̃) is prescribed by

⎡

⎢

⎢

⎣

ρ˜ψt̃ + ρ

2
(

˜ψ2
r̃ + ˜ψ2

z̃

)

︸ ︷︷ ︸

Kinetic pressure

⎤

⎥

⎥

⎦

z̃=h̃

= εo

2
(

˜φ2
r̃ + ˜φ2

z̃

)

z̃=h̃
︸ ︷︷ ︸

Maxwell pressure

+ γ

(1 + h̃2
r̃ )

1/2

(

h̃r̃r̃

1 + h̃2
r̃

+ h̃r̃

r̃

)

︸ ︷︷ ︸

Capillary pressure

.

(8)

It is assumed that gravitational forces are negligible in
comparison to all other forces in the problem. The under-
brace terms describe the various contributions to the
surface pressure driving the rate change in the velocity
potential. We use the term “kinetic pressure” to signify
the kinetic energy per unit volume acting on the mov-
ing interface, which derives from the term in the Euler
equation representing advective acceleration of the fluid in
the laboratory frame.

Zubarev introduced the following scalings for nondi-
mensionalization

(R, Z, H) = εo

γ
˜E2

o × (r̃, z̃, h̃), (9a)

T = ε
3/2
o

γρ1/2
˜E3

o × t̃, (9b)

� = εo

γ
˜Eo × ˜φ, (9c)


 =
(

ρεo

γ 2

)1/2

Ẽo × ˜ψ , (9d)

based on a characteristic value of the field strength ˜Eo,
according to which the dimensionless equations are

[


T + 1
2
(


2
R +
2

Z

)

]

Z=H
= 1

2
(

�2
R +�2

Z

)

Z=H ,

+ 1
(1 + H 2

R)
1/2

(

HRR

1 + H 2
R

+ HR

R

)

,

(10)

∇2�(R, Z) = 0 Z ≥ H , (11)

∇2
(R, Z) = 0 Z ≤ H , (12)

and the dimensionless boundary conditions are

Equipotential �(R, Z, T) = 0 Z = H , (13a)

Decay lim
R→∞

(�2
R +�2

Z) = 0 Z > H , (13b)

Decay lim
R→∞

(
2
R +
2

Z) = 0 Z < H , (13c)

Symmetry �R(R = 0, Z, T) = 0 Z ≥ H , (13d)

Symmetry 
R(R = 0, Z, T) = 0 Z ≤ H , (13e)

Symmetry HR(R, T) = 0 R = 0, (13f)

Kinematic HT −
Z +
RHR = 0 Z = H . (13g)

The last condition is the usual kinematic boundary condi-
tion for free surface flows, which requires that the material
points on the moving interface move with the local flow
speed of the interface.

We note that despite the fact that the original system
describes a liquid subject to applied external electric field,
Zubarev nonetheless invoked boundary conditions speci-
fying vanishing velocity and electric potential in the far
field, in line with our earlier discussion at the start of Sec.
III describing essential features of any self-similar pro-
cess. The underlying assumption for this system is that the
electric field in the region of high interface curvature at
the liquid tip rapidly amplifies from accelerated field self-
enhancement, thereby quickly exceeding the magnitude of
an external field. By comparison then, the external field
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far from the tip becomes negligible. This same reasoning
is applied to the velocity potential since the flow speed
caused by field enhancement also quickly exceeds that of
the far field, which by comparison becomes negligible.

Zubarev noted that since the governing equations
and boundary conditions are invariant to dilation under
the transformations (�,
) → (α�,α
), (R, Z, H) →
(α2R,α2Z,α2H) and T → α3T, the system of equations
support similarity solutions of the form

[r, z, h(r, z)] = [R, Z, H(R, T)]
τ 2/3 , (14)

φ = �(R, Z, T)
τ 1/3 z ≥ h(r), (15)

ψ = 
(R, Z, T)
τ 1/3 z ≤ h(r), (16)

where τ = TC − T > 0. (17)

The dimensionless blowup time TC defines the asymptotic
time at which the Maxwell and capillary pressure diverge
to infinity at the liquid tip due to field self-enhancement.
Identical scalings as these are known to occur in prob-
lems involving capillary-inertial pinchoff in inviscid flow
[42–44] and have been verified in experimental studies of
liquid curvature collapse in a viscous liquid [45]. Finite-
time singularities such as these typically represent local
divergences in the amplitude or gradient of a physical
observable in finite time and are found in many physi-
cal systems, not just hydrodynamic ones. The scaling in
Eq. (14) also implies that in the laboratory frame, the
interface curvature of the liquid tip will shrink rapidly
as limτ→0 τ

2/3 → 0, a process leading to accelerated tip
sharpening.

The governing equations in the self-similar frame
become

[

2
3
(rψr + hψz)− ψ

3
+ ψ2

r + ψ2
z

2

]

z=h

= 1
2
(

φ2
r + φ2

z

)

z=h + 1
(1 + h2

r )
1/2

(

hrr

1 + h2
r

+ hr

r

)

,

(18)

∇2φ(r, z) = 0 z ≥ h, (19)

∇2ψ(r, z) = 0 z ≤ h, (20)

subject to the boundary conditions

Equipotential φ(r, z) = 0 z = h, (21a)

Decay lim√
r2+z2→∞

(φ2
r + φ2

z ) = 0 z > h, (21b)

Decay lim√
r2+z2→∞

(ψ2
r + ψ2

z ) = 0 z < h, (21c)

Symmetry φr(r = 0, z) = 0 z ≥ h, (21d)

Symmetry ψr(r = 0, z) = 0 z ≤ h, (21e)

Symmetry hr(r) = 0 r = 0, (21f)

Kinematic 2(rhr − h) = 3(ψz − hrψr) z = h, (21g)

where the origin (r = 0, z = 0) of the coordinate systems
is made to coincide with the blowup point.

Zubarev succeeded in finding a self-consistent set of
asymptotic self-similar solutions to this system of equa-
tions for the velocity potential ψ , electric field potential
φ, and interface height h represented here in cylindrical
coordinates [46], according to which

ψ(r, z) =
∞
∑

n=0

an
∂3n

∂z3n

(

r2 + z2)−1/2
, (22)

φ(r, z) =
∞
∑

n=0

bn
∂3n

∂z3n

[

(

r2 + z2)1/4 P1/2(cos θ)
]

, (23)

h(r) =
∞
∑

n=0

cnr(1−3n), (24)

where P1/2(cos θ) is the Legendre polynomial of the first
kind of order 1/2 and θ = tan−1(r/z) denotes the polar
angle in spherical coordinates.

We note that as r → ∞, Eq. (21g) reduces to the condi-
tion that hr = 0, which defines a surface of constant slope.
In addition, for the leading-order term in the electric poten-
tial to satisfy a null equipotential condition on the liquid
surface, P1/2(cos θ0) must vanish, which requires cos θ0 ≈
−0.6522 or θ0 ≈ 130.7077◦. Equivalently, this defines a
liquid cone with an interior half-angle θT = 49.2923◦, the
classic Taylor angle. Zubarev highlighted the fact that in
the laboratory frame this shape describes a dynamic cone,
which he remarked was a dynamic analog to the classic
static Taylor cone [20]. The first few coefficients of the
asymptotic series are found to be

a0 = free parameter 0 < a0 < − cot θ0 ≈ 0.860 37,

(25)

b0 =
[

dP1/2(cos θ)
dθ

]−1

θo

[2(−c0 − a0)]1/2 > 0, (26)

c0 = cot θ0 < 0, (27)

a1 = − a2
0(1 + c2

0)
3/2

18c0(3 − 2c2
0)
> 0, (28)
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b1 = 0, (29)

c1 = 0, (30)

c2 = a2
0(4c2

0 − 1)
8c2

0(1 + c2
0)

2(3 − 2c2
0)
> 0. (31)

Zubarev therefore uncovered a one-parameter family of
asymptotic self-similar solutions whose projected length
along the central axis, namely h(r) = r cot θ0 + c2/r5

where c2 > 0, describes an interface lying above the con-
ical envelope with interior half-angle θT. As r = (r2 +
z2)1/2 → ∞, the leading behavior in spherical coordinates
is found to be

ψ(r) = a0

r
+ O

(

1
r5

)

z ≥ h, (32)

φ(r, θ) = b0r1/2P1/2(cos θ)+ O
(

1
r7/2

)

z ≤ h, (33)

h(r) = r cos θ0 + O
(

1
r5

)

. (34)

The asymptotic velocity potential ψ therefore depends
solely on r and the streamlines converge radially toward
the liquid apex, as illustrated in Fig. 3(b). As a check on the
flow direction, we note that along the central axis, ψ(r =
0, z) = a0/z where a0 > 0 and z < 0 since the z-coordinate
values lie below the blowup point at z = 0. Therefore
the fluid velocity (∂ψ/∂z)r=0 = +a0/z2 > 0. This con-
firms radial flow directed toward the apex of the conical
envelope in a radially symmetric manner, as depicted in
Fig. 3(b).

C. Physical implication of Zubarev’s original solution

A key feature of this one-parameter family of solutions
becomes evident in examining the magnitude of terms in
the surface Bernoulli equation, here expressed in spherical
coordinates:

2rψr − ψ

3
+ ψ2

r + r−2ψ2
θ

2
= φ2

r + r−2φ2
θ

2
+ 2κ , (35)

where κ denotes the mean curvature. Substitution of Eqs.
(32)–(34) into Eq. (35) and noting that 2κ = cot θ0/r,
reveals that the kinetic pressure on the interface (i.e., sec-
ond term on the left side) scales as r−4, while all the
remaining terms scale as r−1. The surface kinetic energy is
therefore a negligible contribution to the flow and to lead-
ing order, the surface velocity potential is dominated by
the Maxwell and capillary force. In a subsequent publica-
tion, Zubarev [5] extended his original analysis to the case
of a perfect dielectric liquid and determined that the inte-
rior angle of the asymptotic conical interface, which then
depends on the dielectric constant, is always smaller than
θT.

At the conclusion of that work, Zubarev noted that the
full set of coupled equations for a perfectly conducting or
perfect dielectric liquid admit a more general solution but
there was no more said. Subsequently, he proposed a more
general solution [6] but provided only an outline. The real
focus of that work was on numerical solution of the full
Navier-Stokes equation for Reynolds number of the order
of 100 to see if the blowup behavior he had predicted
was supported by numerical simulations. Indeed, finite-
time blowup behavior was evident even with inclusion of
viscous effects although the power-law exponents seemed
to veer somewhat from the scalings in Eqs. (14)–(16).

IV. GENERAL FORMULATION LEADING TO
ASYMPTOTIC INERTIAL SELF-SIMILAR

SOLUTIONS

In the next section, we detail the approach leading to a
more general solution for the case of a perfectly conducting
liquid and extend the analysis first proposed [6] to include
time-reversal symmetry. The fact that the kinetic pressure
to leading order is of the same magnitude as the Maxwell
and capillary pressure, when coupled with time-reversal
symmetry, introduces a two-parameter family of solutions,
which exhibit accelerating, decelerating, and mixed-mode
flow configurations. As shown below, the general solu-
tion imbues the velocity potential with a leading term that
scales as r1/2P1/2(− cos θ), which introduces both radial
and angular dependence to the resulting interface shapes.
This stands in contrast to the restricted solution discussed
above, which scales simply as r−1.

Shown in Fig. 2 are illustrations of the geometry of
interest and notational symbols used for description of the
laboratory and self-similar frames of reference (in nondi-
mensional form). We introduce here some notation, which
proves convenient for discussion of the boundary integral
technique introduced in Sec. V.

In the laboratory frame, we define a Cartesian level
set function F(X, T) = Z − �(X , Y, T) = 0, where � com-
prises the set of points on the interface separating the
vacuum from liquid domain:

� = {X|F(X, T) = 0} . (36)

The outwardly pointing normal vector is then defined as
N = ∇F/|∇F|. The usual kinematic condition applied to
a moving boundary, which enforces mass and momentum
conservation, requires that all material points on the mov-
ing boundary be convected with the local surface velocity
U� . The level set function F(X, T) must therefore satisfy
the relation

DF
DT

= 0 on �, (37)

where D/DT = ∂/∂T + U� · ∇ and U� denotes the sur-
face flow velocity. This constraint assumes that there is
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Laboratory frame

Z

X Y

N

Ωliq

Ωvac

n

ωliq

ωvac

θ
0

r

χc

XC

Self-similar frame

Γ(X,T)

γ(χ)

FIG. 2. Top image: laboratory frame description. An axisym-
metric protrusion, emanating from a pool of perfectly conducting
liquid (yellow) held at constant potential and of volume �liq
with surface boundary �(X , T) (cyan), accelerating toward a flat
circular counter electrode (gray). The volume of the interstitial
vacuum layer is denoted (�vac). Nondimensional Cartesian coor-
dinates are denoted X = (X , Y, Z). The surface unit normal is N .
The point XC (red dot) denotes the intersection of the central ver-
tical axis with the tangent to the conical envelope defined by the
classic Taylor cone with interior half-angle θT ∼= 49.2923◦. At
the point XC, the Maxwell and capillary pressure diverge to infin-
ity. Bottom image: self-similar frame of reference depicted in
spherical coordinates where χ = (XC − X )/τ 2/3 and τ = TC −
T. The boundary γ (X ) (cyan) denotes the interface separating
the liquid volume ωliq from the vacuum volume ωvac. The surface
unit normal is n. The exterior polar angle θ0 = π − θT.

no phase transformation on the moving interface. Accord-
ingly, the kinematic boundary condition simplifies to

1
|∇F|

∂F
∂T

+ U� · N = 0 on �. (38)

The general unsteady form of the inviscid Bernoulli
equation for the velocity potential 
, which includes the
term representing the fluid kinetic energy per unit volume
|∇
|2/2, valid everywhere within the fluid volume�liq, is

r

ψ ∝ 1/r

ψ ∝ r1/2 P1/2(−cos θ)

ψ = 0

liquid

liquid

liquid

θ
θ0

θT

z

r

(a)

(b)

(c)

FIG. 3. Illustrations of asymptotic self-similar solutions for
three flow regimes showing the electric potential ψ (solid black
lines), electric field |∇φ| (dashed black lines), fluid pressure p
(solid red lines—equal increments) and fluid velocity ∇ψ (black
arrows). The liquid (yellow) and vacuum domains are separated
by an interface (cyan), which as r → ∞ describes a conical inter-
face z = h(r) = r cos θ0, where θ0 = π − θT ∼= 130.7077 and θT
is the class Taylor angle. The apex (red point) of the conical enve-
lope defines the blowup point. (a) Classic static Taylor solution
in self-similar frame. (b) Inertialess self-similar solutions from
Eqs. (32)–(34). (c) Example of inertial self-similar solution from
Eqs. (65)–(67).

given by [38]

∂


∂T
+ 1

2
∇
 · ∇
 + P = 0, (39)
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where P denotes the fluid pressure, which at the moving
interface assumes the value

P = −2H − 1
2
|E|2 on �. (40)

Since the flow is assumed to be inviscid, the veloc-
ity potential therefore satisfies time-reversal symmetry.
Accordingly, we introduce a signed time variable τ to
allow description of pre- and postsingularity flows:

τ = +(TC − T) for T < TC presingularity flow, (41)

τ = −(TC − T) for T > TC postsingularity flow, (42)

where TC denotes the dimensionless blowup time signaling
the divergence of the pressures acting at the singular apex
of the asymptotic conical envelope. For τ = TC − T > 0,
the fluid advances toward the singularity from below, i.e., a
presingularity event. For τ = T − TC > 0, the fluid retracts
toward the singularity from above, i.e., a postsingularity
event. We introduce a self-similar coordinate vector

χ = X − XC

τ 2/3 , (43)

where XC denotes the intersection of the central vertical
axis with the tangent to the conical envelope defined by
the envelope defined by the asymptotic Taylor cone, and a
dilated time variable given by

t = − ln τ . (44)

The corresponding velocity potential, electric potential,
and level set function undergo transformation to

ψ(χ, t) = ±
(X, T)
τ 1/3 , (45)

φ(χ, t) = �(X, T)
τ 1/3 , (46)

f (χ, t) = F(X, T)
τ 2/3 , (47)

where the surface boundary γ separating the semi-infinite
liquid and vacuum domains, ωliq and ωvac, respectively, is
defined by

γ = {χ|f (χ, t) = 0} , (48)

where f (χ , t) = z − h(r, t). As τ → 0, these field vari-
ables diverge to infinity. Any residual time dependence t
in the transformed fields ψ , φ, and f indicates time depen-
dency over and above the explicit scalings in τ . Because of
the isotropic scaling of the spatial coordinates in Eq. (43),

the Laplace equation for the velocity and electric potential
remain unchanged:

∇2ψ = 0 in ωliq and ∇2φ = 0 in ωvac, (49)

where the operator ∇ is understood to act on the self-
similar coordinate χ. Since the fluid is assumed to be a
perfectly conducting liquid, φ = 0 on γ .

The transformed surface Bernoulli equation and kine-
matic condition, respectively, become

∂ψ

∂t
+ 2

3
χ · ∇ψ − ψ

3
+ 1

2
|∇ψ |2 = 2κ + 1

2
|∇φ|2 on γ ,

(50)

1
|∇f |

∂f
∂t

+ 2
3

n · χ + n · ∇ψ = 0 on γ ,

(51)

where κ is the local mean curvature of γ and n =
∇f /|∇f | is the unit normal vector pointing away from the
liquid mass. The pressure within the liquid mass is given
by

p(χ, t) = −∂ψ
∂t

− 2
3
χ · ∇ψ + ψ

3
− 1

2
|∇ψ |2. (52)

In what follows, we restrict attention to field solutions,
which are stationary in the self-similar frame of refer-
ence such that ψ̇ = φ̇ = ḟ = 0 where the dot denotes the
derivative ∂/∂t. The surface Bernoulli equation, recast in
spherical coordinates, is

2rψr − ψ

3
+ ψ2

r + r−2ψ2
θ

2
= 2κ + φ2

r + r−2φ2
θ

2
on �(r),

(53)

where the electric and velocity potential throughout the
liquid and vacuum domain must satisfy the relations

φrr + 2φr

r
+ φθθ

r2 + φθ cot θ
r2 = 0 θ ≥ �(r), (54)

ψrr + 2ψr

r
+ ψθθ

r2 + ψθ cot θ
r2 = 0 θ ≤ �(r). (55)

In Eq. (53), the boundary �(r) defines the surface separat-
ing the liquid from vacuum domain. The term (2/3)χ · ∇ψ
in Eq. (50) reduces simply to (2/3)rψr since the polar angle
θ is invariant under the self-similar transformation. The
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capillary pressure is 2 κ = −∇ · n where

∇ · n = ∂nr

∂r
+ 2nr

r
+ nθ cot θ

r
, where (56)

nr = −�r(r)
(�2

r + r−2)1/2
, (57)

nθ = 1
r(�2

r + r−2)1/2
. (58)

These boundary conditions for solving this system of
equations are chosen to be

Equipotential φ(r, θ) = 0 on �(r), (59a)

Decay lim
r→∞

(

φ2
r + φ2

θ

r2

)

= 0 θ > �(r), (59b)

Decay lim
r→∞

(

ψ2
r + ψ2

θ

r2

)

= 0 θ < �(r), (59c)

Symmetry φθ(r, θ) = 0 θ = 0,π , (59d)

Symmetry ψθ(r, θ) = 0 θ = 0,π , (59e)

Symmetry �r(r) = 0 θ = 0, (59f)

Kinematic
2
3
�r = ψθ

r3 sin2�
− ψθ�r cot�

r2 − ψr�r

r
,

(59g)

with identical far-field conditions as before. We note that
as r → ∞, Eq. (59g) reduces simply to the condition�r =
0 defining a surface of constant slope. In analogy to the
derivation in Sec. III B, this condition when augmented by
the equipotential condition restricts the fluid envelope to
that of a dynamic Taylor cone with exterior polar angle
θ0 = π − θT.

There are three regimes of interest embedded in the
full set of self-similar equations and boundary conditions
specified above. The first limiting case, described next in
Sec. IV A, represents the classic static solution derived
by Taylor [20] illustrated in Fig. 3(a).That unique solu-
tion defines the surface shape for which the capillary and
Maxwell pressure everywhere cancel, although the coni-
cal apex is a singular point. The second regime, which
is derived in Sec. III, describes the one-parameter fam-
ily of solutions obtained by Zubarev [4] and illustrated
in Fig. 3(b) in which the surface kinetic pressure is neg-
ligible in comparison to the Maxwell and capillary pres-
sure. The third limit, derived below in Sec. IV B, requires
that the kinetic pressure in the self-similar form of the
surface Bernoulli equation also contribute to leading order.

Here, we explicitly allow for configurations which obey
time-reversal symmetry as well. The resulting asymptotic
solutions considerably expands the number of fluid config-
urations possible for an electrified protrusion in a perfectly
conducting liquid.

A. Limit of classic Taylor cone solution

In the laboratory frame, the classic Taylor cone solu-
tion describes the shape of a stationary mass of electrified
fluid acted upon solely by capillary and Maxwell forces.
Throughout the volume ωliq, the velocity potential is main-
tained at ψ = 0. The general harmonic solution [47] for
the electric potential φ is then

φ(r, θ) =
∞
∑

ν=0

bnrνPν(cos θ), (60)

where Pν(cos θ) is the Legendre function of the first kind
of order ν, Pν(cos θ) = P−ν−1(cos θ) and ν denotes a real
nonintegral number. The function Pν(cos θ) has a log-
arithmic singularity at θ = π , which is excluded since
φ is confined to the vacuum domain 0 ≤ θ ≤ �(r). For
φ to be finite at the origin, ν must be positive. The
requirement that the liquid represent an equipotential mass
requires Pν(cos θ) = 0. Substitution of ψ = 0 (as well as
its derivatives) into Eq. (53) reduces the surface Bernoulli
equation to the two competing terms on the right-hand
side, which reflect the static balance between the capillary
and Maxwell pressure. Since the mean curvature κ scales
as 1/r and the Maxwell pressure scales as |∇ψ |2 ∼ r2(ν−1),
the only allowable solution is ν = 1/2. For P1/2, the only
zero in the range 0 < θ < π is given by cos θ0 = −0.6522
and so θ0 ∼= 130.7077 and π − θ0 ∼= 49.2923◦ = θT. To
leading order, this static solution is given by

ψ = 0 θ ≤ θ0, (61)

φ = b0 r1/2P1/2(cos θ) θ ≥ θ0, (62)

where from Eq. (53) the constant b0 is evaluated to be

b0 =
√

−2 cot θ0

[

dP1/2(cos θ)
dθ

]−1

θ0

≈ 1.345 93. (63)

This solution plotted in Fig. 3(a) contains no free parame-
ters. Of note, this solution is not uniformly valid since the
electric field strength ∂φ/∂r diverges to infinity at r = 0.
The static Taylor cone is therefore at best a metastable
state.
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B. Asymptotic two-parameter family of inertial
self-similar solutions

Solutions which are stationary in the self-similar frame
nonetheless allow liquid configurations in the laboratory
frame, which are time dependent and can undergo run-
away growth. This section focuses then on asymptotic
self-similar solutions in which the surface kinetic pressure,
capillary pressure, and Maxwell pressure in Eq. (53) all
contribute to leading order in r.

Inspection of Eq. (53) reveals this is possible when φ ∼
r1/2F(θ) and ψ ∼ r1/2G(θ). Substitution of these relations
in Eq. (53) leads to cancelation of the first term on the left
side since 2rψr = ψ , leaving only terms proportional to r
such that

1
r

(

G2

8
+ G2

θ

2

)

= 1
r

(

F2
θ

2
+ cot θ0

)

. (64)

This same scaling ψ ∼ r1/2G(θ) also occurs in studies
of capillary-inertial pinchoff [42]. The leading-order solu-
tions are then given by

ψ(r, θ) = a0r1/2P1/2(− cos θ)+ a1

r
+ O

(

1
r5/2

)

, (65)

φ(r, θ) = b0r1/2P1/2(cos θ)+ O
(

1
r

)

, (66)

�(r) = θ0 + O
(

1
r3/2

)

, (67)

where terms proportional to Q1/2 (Legendre function of
the second kind of order 1/2) are eliminated to prevent
divergence of φ along the axis θ = 0 and divergence of ψ
along the axis θ = π . The term P1/2(− cos θ), which has
a logarithmic singularity at θ = 0, is nondivergent since
the velocity potential is confined to the liquid domain 0 <
�(r) ≤ θ ≤ π . Likewise, P1/2(cos θ), which has a log-
arithmic singularity at θ = π , is nondivergent since the
electric potential is confined to the vacuum domain 0 ≤
θ ≤ �(r). Applying the equipotential potential condition
in Eq. (59a) and the kinematic condition in Eq. (59g) yields
the recursion relation

a1 = a2
0

2

{[

P1/2(− cos θ0)

2

]2

+
[

dP1/2(− cos θ)
dθ

∣

∣

∣

∣

θ0

]2}

− b2
0

2

[

dP1/2(cos θ)
dθ

∣

∣

∣

∣

θ0

]2

− cot θ0. (68)

In contrast to the inertia-free solution in Sec. III, the
leading-order term in the velocity potential no longer
scales purely as r−1 but instead as r1/2P1/2(− cos θ), which
imbues the field with an angular dependence, as shown
in Fig. 3(c). The inertial contribution to the flow causes
potential field lines that are no longer purely radial and no
longer aligned with the pressure gradient.

The complete asymptotic series valid in the limit r � 1,
here denoted by the subscript ∞, is given by

ψ∞(r, θ) =
∞
∑

k=0

akr1/2−3k/2 P3k/2−3/2(− cos θ), (69)

φ∞(r, θ) =
∞
∑

k=0

bkr1/2−3k/2 P3k/2−3/2(cos θ), (70)

h∞(r) =
∞
∑

k=0

ck r1−3k/2, (71)

where P−ν−1(x) = P+ν(x). The series coefficients are
given below. In Eq. (71), we reintroduce the cylindri-
cal radial coordinate r = r sin θ so as to absorb the sine
function into the coefficients ck, which simplifies later
expressions.

The procedure for determining the coefficients is a non-
trivial exercise since ak, bk, and ck are coupled together by
three nonlinear equations, which must be evaluated along
the actual interface h = c0r +∑∞

k=1 ckhk and not sim-
ply the Taylor cone surface h = r cot θ0. The interweaved
procedure for obtaining these coefficients in illustrated
schematically in Fig. 4.These coefficients are computed
term by term using the symbolic manipulation software
Mathematica [48]. The notation P′

ν(·) denotes differenti-
ation of the Legendre function with respect to the argu-
ment cos θ . The first few terms in the velocity potential
are

a0 = Free parameter,

a1(a0, b0, c0) = Eq. (68),

a2(c0, . . . , c3, a1) = 3√
sin θ0P′

3/2(− cos θ0)

(

−a1c1

2
+ c3

1

8 sin θ0
+ c3

sin3 θ0

)

.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(72)

The first few coefficients for the electric potential are
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b0 = Free parameter,

b1(c0, c1, b0) = −b0c1 sin3/2 θ0P′
1/2(cos θ0),

b2(c0, . . . , c2, b0) = −b0
2c2P′

1/2(cos θ0)+ c2
1 sin3 θ0P′′

1/2(cos θ0)

2P3/2(cos θ0)
,

b3(c0, . . . , c3, b0) = b0P′
1/2(cos θ0)

[

c1c2P′
3/2(cos θ0)

csc3/2 θ0P3/2(cos θ0)P3(cos θ0)

− 8c3 csc4 θ0 + c3
1

(

csc2 θ0 + 1
)+ 12c1c2 cot θ0 csc2 θ0

8 csc5/2 θ0P3(cos θ0)

]

+ b0P′′
1/2(cos θ0)

[

c3
1P′

3/2(cos θ0)

2 csc9/2 θ0P3/2(cos θ0)P3(cos θ0)
− c1c2

csc3/2 θ0P3(cos θ0)

]

− b0P
′′′
1/2(cos θ0)c3

1

6 csc9/2 θ0P3(cos θ0)
.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(73)

The first few coefficients for the liquid interface height are

c0 = cot θ0,

c1(a0, c0) = P′
−3/2(− cos θ0)√

csc θ0
a0,

c2(c0, c1) = − c2
1

2P′
1/2(− cos θ0)/ sin θ0

[

2 cos(θ0)P′
1/2(− cos θ0)

+ sin2 θ0P′′
1/2(− cos θ0)+ 3P1/2(− cos θ0)/4

]

.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(74)

Evaluation of the term c1 in Eq. (74) gives c1 = 0.368 43a0—the coefficients c1 and a0 are therefore simply related by a
positive constant. When the fluid interface lies below the Taylor cone envelope specified by the k = 0 term in Eq. (71),
then c1 < 0 and therefore a0 < 0.

The general recursion relations for ak, bk, and ck for k > 1 are uniquely determined by the leading-order coefficients
a0, b0, and c0. Moreover, since the coefficient c0 = cot θ0, the solutions are specified by only two independent parameters,
namely (a0, b0), or equivalently, (b0, c1), as for example the coefficient a2, where

a2(c1, b0) = c1

[

b2
0

P1/2(− cos θ0)− 4 cos θ0P′
1/2(− cos θ0)

8 csc3/2 θ0P3/2(− cos θ0)P′
1/2(− cos θ0)

P′2
1/2 (cos θ0)

+4 cos θ0P1/2(− cos θ0)− (3 cos (2θ0)+ 5)P′
1/2(− cos θ0)

16P3/2(− cos θ0)P′
1/2(− cos θ0)

csc3/2 θ0

]

+ c3
1

16 cos θ0P′3
1/2(− cos θ0)+ 4P1/2(− cos θ0)P′2

1/2(− cos θ0)− csc2 θ0P3
1/2(− cos θ0)

32 csc1/2 θ0P3/2(− cos θ0)P′3
1/2(− cos θ0)

. (75)

The change of variable − cos θ0 → x in Eq. (74) also establishes that the coefficient c2 = 0 since

c2 ∝ 2 cos(θ0)P′
1/2(− cos θ0)+ sin2 θ0P′′

1/2(− cos θ0)+ 3
4

P1/2(− cos θ0)

= d
dx

[

(1 − x2)
dP1/2(x)

dx

]

+ 1
2

(

1
2

+ 1
)

P1/2(x) = 0. (76)
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The last equality derives from the fact that the differ-
ential equation is none other than the Legendre equation
for P1/2(x). The fact that c2 = 0 places special relevance
on the leading-order correction to the asymptotic conical
envelope given by (h∞ − r cot θ0) = c1/

√
r.

Once the coefficients for ak, bk, and ck are computed, the
series solution for the fluid pressure can be obtained from
the stationary form of Eq. (52) where

p∞(r, θ0) = 1
r

{

a1 − a2
0

8

[

4 sin2 θP
′2
1/2(− cos θ)+ P2

1/2(− cos θ)
]

}

+ 1
r5/2

[a0a1

2
P1/2(− cos θ)+ 2a2P3/2(− cos θ)

]

+ O(r−4). (77)

The pressure field, which is subject to time-reversal
symmetry, now includes inertial effects, which introduce
the dependence on θ .

C. Estimation of liquid apex height from geometric
considerations

Maximum and minimum bounds on the liquid height
along the central axis of symmetry can be obtained from
geometric considerations. For convenience, we resort in
this part of the analysis to cylindrical coordinates. To
begin, the kinematic condition in Eq. (21g) (valid even in
the inertial case), when evaluated about the central axis of
symmetry reduces simply to

∂ψ

∂z

∣

∣

∣

r=0
= −2

3
hr=0. (78)

The fluid velocity at r = 0 is therefore controlled by the
sign of h(r = 0), which denotes the projection of the inter-
face function onto the axis of symmetry. For example,
when T < TC and the fluid tip is advancing from below
toward the apex of the conical envelope defined by the

a0

b0

c0

ak ak+1 ak+2

bk bk+1 bk+2

ck ck+1 ck+2

FIG. 4. Flow chart depicting the interweaved procedure for
computing the coefficients ak, bk, ck. Arrows represent the equa-
tions required for computing the coefficient shown to the next
higher order as required by simultaneous solution of the equipo-
tential condition in Eq. (59a) (blue arrows), the kinematic bound-
ary condition in Eq. (59g) (red arrows), and the surface Bernoulli
equation given by Eq. (53) (green arrows).

Taylor angle, indicated by the red dot in Fig. 6(a), then
h(r = 0) < 0 and ψz|apex > 0. Likewise when T > TC and
the fluid tip is advancing toward the conical apex from
above, then h(r = 0) > 0 and ψz|apex < 0. Separated flow
is also possible in which the fluid in the liquid tip is mov-
ing upward but the nearby bulk fluid is moving downward
or vice versa, similar to capillary-inertial recoil in liquid
filaments [44,49]. Since the inviscid Bernoulli equation
is invariant under time-reversal symmetry, we anticipate
there exist many such flow configurations, which we coin
subconical, superconical, and mixed conical. Illustrations
of such configurations are depicted in Fig. 5. The sketch
in Fig. 3(c) depicts an example showing ballisticlike flow
typical of solutions for large values of b0.

In his original study, Zubarev [4] developed an elegant
geometric argument for obtaining a bound on the vertical
distance between the liquid tip and the apex of the coni-
cal envelope. He noted that since the velocity potential is a
harmonic function, the net flux induced by ∇ψ must van-
ish upon integration over a closed bounded surface. What
simplified the analysis is that the correction to the leading-
order term in the expansion for h − r cot θ0 ∼ O(r−5),
a term which could be ignored. For the case in which
inertial forces are significant, h(r)− c0r = c1r−1/2 + · · · ,
which introduces some difficulties; however, we show next
that useful and compact relation can still be obtained by
invoking some minor additional assumptions.

We refer to the illustrations and variable definitions in
Fig. 6 to develop estimates and bounds on the volumes and
distances shown. The interstitial volume ωT is computed
from the relation

ωT =
∮

ωT

dω = 1
3

∮

ωT

∇ · χ dω

= 2π
3

∫

γT

nT · χ rdγ + 2π
3

∫

γ∗
n∗ · χ rdγ

− 2π
3

∫

γ

n · χ rdγ , (79)

044001-15



CHENGZHE ZHOU and SANDRA M. TROIAN PHYS. REV. APPLIED 15, 044001 (2021)

(a)

Tip and interior
retraction

T  > Tc
Tip and interior 

advance

T < Tc

Subconical

(b) Superconical

Tip and interior
advance

T  > Tc
Tip and interior 

retraction

T < Tc

(c) Mixed-conical

Tip retraction with
interior advance

T  > Tc
Tip advance with 
interior retraction

T < Tc

θΤ

FIG. 5. Flow configurations resulting from inertia effects
showing relative motion between fluid in the tip and nearby bulk
region. Dashed line (red) represents the asymptotic conical enve-
lope with interior half-angle θT. Curved lines (cyan) denote the
interface of the electrified liquid. (a) Subconical configuration in
which both the tip and bulk fluid together advance or together
recede from the conical envelope, which is always above the
moving liquid. (b) Superconical configurations in which both the
tip and bulk fluid together advance or together recede from the
conical envelope, which is always below the moving liquid. (c)
Example of a mixed-conical configuration in which the tip and
bulk fluid move in opposite directions, with some portions of the
liquid interface below and some above the conical envelope.

where χ = (r, z) denotes coordinate points. No liquid can
traverse the axis of symmetry and therefore that contribu-
tion vanishes. The negative sign in the last term reflects
the fact that along the boundary γ , nT = −n. Along the
conical boundary γT, it is also the case that χ · nT = 0
and therefore the corresponding integral in Eq. (79) also

χ*

n
γ

ωT γT
γ*

ωliq

γD
ωD γ

χ*

γγliqliqγγγ

ωliq

γD
χ*

γ

ωliq

γγliqliqγγγ

zmax

nT

n*

θ r

z

θ0

ωD^

γγliqliqγγγ

â
r

ωD

(a) (b)

(c)

FIG. 6. Illustrations of the geometry for estimating the dis-
tance between the maximum liquid height and the apex of the
asymptotic conical envelope (red dot) with θ0 = π − θT. Vol-
umes indicated by ωT, ωD, and ω̂D can be positive or negative
depending on whether the liquid is advancing toward the conical
apex point from below (subconical configuration) or advancing
toward the intersection point from above (superconical config-
uration)—see Fig. 5. (a) The volume ωT (hatched gray lines)
(interface unit normal nT) denotes the interstitial volume above
the liquid boundary γ (cyan curve) and below the conical enve-
lope boundary γT (dashed black line) defined by the exterior
angle θ0. The coordinate χ∗ = (r∗, θ0) denotes the point of inter-
section between γliq (dashed black curve) and γ . The boundary
element γ∗ (magenta line) with unit normal n∗ is a small ver-
tical line bridging γ and γT at χ∗. (b) The volume ωD (red
hatched lines) represents the interstitial volume between γ and
γD (dashed red line). The branch of γD to the right is defined by
the curve z = c0r + c1r−1/2. (c) The domain ω̂D (hatched lines)
represents the small volume exterior to γ , which is enclosed
within the gray rectangular region with horizontal length r = â
and vertical length z = zmax. The variable â denotes the radial
coordinate corresponding to the turning radius of γD. The vari-
able zmax is related to the minimum elevation of γ at r = 0 as
described in the text.

vanishes. The integral over γ∗ also simply reduces to
(2π/3) r2

∗ [c0r∗ − z∗].
Evaluation of the integral along γ requires an ana-

lytic expression for the boundary function. The stationary
form of Eq. (51), along with the observation that ∇2ψ =
0 within ωliq and application of the divergence theorem
yields

2
3

∫

γ

n · χrdγ = 1
2

∫

γ

n · ∇ψ2πrdγ

= 1
2

(

∫

γ∪γliq

−
∫

γliq

)

n · ∇ψ2πrdγ
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= 1
2

∫

ωliq

∇ · ∇ψdω − π

∫

γliq

(n · ∇ψ)r2
∗ sin θdθ

= −π
∫

γliq

(n · ∇ψ) r2
∗ sin θdθ , (80)

where the quantity γ ∪ γliq denotes the union of the
boundaries enclosing the volume ωliq. Recall too that r =
r sin θ . In the limit r → ∞, the velocity potential on γliq
approaches its asymptotic value ψ∞ given by Eq. (69),
which when substituted into Eq. (80) yields

∫

Sliq

n · ∇ψr2
∗ sin θdθ

=
∫ π

θ∗

∂ψ∞
∂r

∣

∣

∣

(r∗,θ)
r2
∗ sin θdθ

=
∞
∑

k=0

ak

∫ π

θ∗

∂ψk

∂r

∣

∣

∣

(r∗,θ)
r2
∗ sin θdθ

=
∞
∑

k=0

ak

∫ π

θ∗

∂r
1
2 − 3

2 k

∂r

∣

∣

∣

r∗
P 3

2 k− 3
2
(− cos θ)r2

∗ sin θdθ

=
∞
∑

k=0

ak
1 − 3k

2
r

3
2 − 3

2 k
∗

∫ π

θ∗
P 3

2 k− 3
2
(− cos θ) sin θdθ

=
∞
∑

k=0

ak
1 − 3k

2
r

3
2 − 3

2 k
∗

∫ 1

− cos θ∗
P 3

2 k− 3
2
(x)dx

= −a1(1 + cos θ∗)+ 2a0

3
r3/2
∗ sin2 θ∗P′

1
2
(− cos θ∗)

+
∞
∑

k=2

akr
3
2 − 3k

2∗
2 sin2 θ∗
3(1 − k)

P′
3k
2 − 3

2
(− cos θ∗). (81)

The last step is obtained by noting that

∫ 1

x
Pν(x′) dx′ = 1 − x2

ν(ν + 1)
P′
ν(x) for ν �= 0, (82)

a relation obtained directly from integration of the Legen-
dre differential equation. Substitution of Eqs. (80) and (81)
into Eq. (79) results in the series solution

ωT = a1π(1 + cos θ∗)− a0
2π sin2 θ∗

3
r3/2
∗ P′

1/2(− cos θ∗)

+ · · · + 2π
3

r2
∗ [r∗ cos θ0 − h(r∗)] , (83)

where the domain truncation radius r∗ = r∗ sin θ . We now
expand each term in powers of r in the limit where the
domain truncation radius r∗(or r) � 1 such that θ∗ → θ0
and c2 = 0 from Eq. (76). After some straightforward

algebra, we find

ωT = a1π(1 + cos θ0)+ a2
0π

3
P′

1/2(− cos θ0)

×
[

cos θ0P′
1/2(− cos θ0)

(1 + cos2 θ0)3/2
+ 2P′′

1/2(− cos θ0)

(1 + cos2 θ0)2

]

−
∫ r∗

0
c1r−1/2 2πrdr + O(r−3/2

∗ ). (84)

Since all terms remain bounded as r∗ → ∞, the final result
is given by

lim
r∗→∞

{∫

ωT

dω +
∫ r∗

0
c1r−1/22πrdr

}

= a1π(1 + cos θ0)+ a2
0π

3
P′

1/2(− cos θ0)

×
[

cos θ0P′
1/2(− cos θ0)

(1 + cos2 θ0)3/2
+ 2P′′

1/2(− cos θ0)

(1 + c2
0)

2

]

.

(85)

The choice a0 = 0, which from Eq. (74) implies that c1 =
0, reduces to the result by Zubarev [4] for inertialess
systems.

A more intuitive geometric interpretation of the rela-
tion in Eq. (85) can be derived by introducing the curved
boundary γD illustrated in Fig. 6(b) where

γD = {r, c0r + c1r−1/2) | 0 ≤ r ≤ r∗}. (86)

We define a corresponding volume ωD, which encloses
the region between the liquid-vacuum interface γ and the
leading-order asymptote γD such that

lim
r∗→∞ωD = lim

r∗→∞

∫ r∗

0

[

c0r + c1r−1/2 − h(r)
]

2πrdr

= a1π(1 + cos θ0)+ a2
0π

3
P′

1/2(− cos θ0)

×
[

c0P′
1/2(− cos θ0)

(1 + c2
0)

3/2
+ 2P′′

1/2(− cos θ0)

(1 + c2
0)

2

]

. (87)

Numerical evaluation of this expression yields limr∗→∞ ωD
≈ 1.093 a1 − 0.118 a2

0. Equation (87), which places an
additional constraint on a1 and c1, or equivalently, a0 and
b0, establishes that arbitrary combinations of a0 and b0 are
not all admissible.

A bound on the distance between the liquid top and the
apex of the conical envelope can now be derived from
Eq. (87). For simplicity, we restrict attention to the case
c1 < 0 and recall that c0 = cot θ0 < 0 as well. Consider a
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boundary γ everywhere bounded below by γD, according
to which

c0r + c1r−1/2 ≤ h(r) ≤ c0r for r ≥ 0 and c1 < 0.
(88)

Referring to Fig. 6(c), let the radial coordinate r = â define
the turning point radius of γD where the curve attains its
maximum amplitude such that

ω̂D = lim
r∗→∞ωD =

∫ â

0

(

c0r + c1r−1/2 − zmax
)

2πrdr,

(89)

which then yields the coordinate values

â =
(

c1

2c0

)2/3

, (90)

zmax =
(

2 cos θ0

c1

)1/3 (5
3

c1 − 2c0

πc1
lim

r∗→∞ωD

)

. (91)

It follows immediately from evaluation of Eq. (88) on the
interval 0 ≤ r ≤ â that the maximum elevation in h must
occur above the maximum elevation of γD at â, and its
minimum elevation below zmax such that

3c1

22/3

(

c0

c1

)1/3

≤ max
r∈[0,â]

h(r) and (92)

min
r∈[0,â]

h(r) ≤ zmax. (93)

V. COMPLETE NUMERICAL SOLUTION BY
BOUNDARY INTEGRAL PATCHING TECHNIQUE

The asymptotic solutions for the velocity potential,
electric potential, and interface shape derived in Sec.
IV are valid only at large distances far from the liquid
tip. The complete solution to the self-similar system of
nonlinear equations describing electrified flow requires a
fully numerical approach. In what follows, we outline the
boundary integral patching technique [43] used for this
purpose, in which the asymptotic solutions derived in the
previous section are used to construct the far-field bound-
ary conditions. The interested reader may wish to consult
the original study by Lennon and co-workers [50], which
lay the ground work for formulating numerical solutions
to problems involving nonlinear, free surface, axisymmet-
ric flows, as well as more recent studies by Lister and
co-workers [42–44], who examined self-similar capillary
pinchoff of an inviscid fluid. The textbook by Pozrikides
[51] is also an excellent source on the ins and outs of
boundary integral techniques.

Shown in Fig. 7 are illustrations of the geometry and
boundary conditions used to obtain the numerical solu-
tions. According to Green’s theorem, since the velocity
potential ψ and electric potential φ satisfy a harmonic
equation, they can be represented by boundary integrals of
the form

βψ(χ′) =
∮

γ∪γliq

{

g
∂ψ

∂n
− ψ

∂g
∂n

}

2πrdγ (χ), (94)

βφ(χ′) =
∮

γ∪γvac

{

g
∂φ

∂n
− φ

∂g
∂n

}

2πrdγ (χ), (95)

where the axisymmetric Green’s function g(χ′, χ) is
defined symbolically by

g =
∫ 2π

0
G dϑ , (96)

where ϑ is the cylindrical azimuthal angle, G =
1/R where R = [(x − x′)2 + (y − y ′)2 + (z − z′)2]1/2 and
∇2G = −4πδ(x − x′)δ(y − y ′)δ(z − z′) where δ is the
Dirac δ function.

The function g(χ′, χ), which represents the potential
strength at χ from a ring source at χ′, cannot be expressed
in terms of simple elementary functions. However, it can
be expressed in terms of the complete elliptic integrals of
the first and second kind [50]. For numerical integration,
the boundary curves γ and γliq enclosing the fluid volume
ωliq, and γvac and γ enclosing the vacuum volume γvac,
are discretized by a finite number of straight-line segments
where β (expressed in radians) represents the interior angle
between two adjacent segments. Along smooth portions
of these boundaries β = π while at the domain trunca-
tion point β = π/2. While in most boundary value prob-
lems involving semi-infinite domains, contributions from
boundary elements in the far field can be neglected since
they vanish identically, this is not the case here. For exam-
ple, when evaluated along the boundary segment γliq, the
contribution

∫

γliq

ψ
∂g
∂n

2πrdγ ∼ r1/2
∗ , (97)

which does not vanish but increases with r∗. Similarly for
the contribution to the electric potential from the integral
containing g and ∂φ/∂n. It is therefore critical that the
contributions from the far-field boundaries γliq and γvac be
included in the computations in order to obtain accurate
solutions.

The boundaries γ , γliq, and γvac are discretized by a
set of knots interpolated by quintic splines. Quadratic
Lagrange basis functions along the spline arc length are
used to approximate ψ , ∂ψ/∂n, φ, and ∂φ/∂n using the
Lagrange nodal values along the boundary. For integrals
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FIG. 7. Sketches showing two computational domains, ωliq
and ωvac, and corresponding far-field boundary conditions used
for numerical solution (in the self-similar frame) of the interface
shape, velocity field, and electric potential. (a) Liquid domain
of volume ωliq bounded above by the boundary γ (teal solid
line) and below by the boundary γliq (black dashed line). Vac-
uum domain of volume ωvac bounded above by the boundary γvac
(magenta solid line) and below by the boundary γ . Domain trun-
cation point denoted by χ∗. Spherical coordinates indicated by
(r, θ). (b) Boundary conditions for velocity potential ψ satisfy-
ing kinematic condition from Eq. (59g) on γ and ψ∞ from Eq.
(69) on γliq. (c) Boundary conditions for electric field potential
φ subject to φ = 0 on γ and ∂φ∞/∂n from Eq. (70) on γvac. (d)
Axisymmetric cylindrical geometry for boundary integral patch-
ing technique described in Sec. V; β = π along smooth boundary
segments and β = π/2 at truncation point χ∗.

involving Green’s function g or its derivative that did
not contain a singular point within the boundary element
and therefore behaved regularly, integration proceeded
by Gauss-Legendre quadratures. When the singular point

occurred at either end of a boundary element, integration
relied instead on logarithmic-weighted quadratures since
the normal derivative of g has a logarithmic singularity.

The illustrations in Fig. 7 indicate the geometry and
boundary conditions used in the numerical computations.
The boundary conditions applied along the curves γ , γliq,
and γvac are specified as follows. The velocity potential
ψ is required to satisfy a Neumann condition on γ given
by the steady form of the kinematic condition in Eq. (51)
and a Dirichlet condition on γliq prescribed by the asymp-
totic series in Eq. (69) up through k = 4. The electric
potential φ on γ is required to satisfy the Dirichlet equipo-
tential condition in Eq. (59a) and a Neumann condition
∂φ/∂n on γvac obtained from Eq. (70) up through k = 4.
The domain truncation radius is situated very far from
the liquid tip—simulations were carried out with |χ∗| =
50, 75, 100. Although we did not conduct a convergence
study, the results shown using |χ∗| = 50 reproduced the
same values obtained with larger radii.

Functions and their first derivatives evaluated on bound-
ary elements adjacent to a corner can exhibit discontinuous
behavior—as such, element distributions sharing a corner
node are no longer appropriate [51]. The corner point χ∗
joining the boundaries γ and γliq or γ and γvac in Fig. 7
is a boundary corner where β = π/2. The discontinuity
stems from the different boundary conditions on the lin-
ear segments joined by that point. In evaluating the corner
point where β = π/2, we adopt the numerical approach
described in Ref. [52] in which an extra constraint is
imposed based on a local approximation (finite difference)
to the field variables ψ and φ and their derivatives just
prior and subsequent to the point.

The numerical scheme proceeds as follows. Given a
parameter pair (a0, b0) specified by Eqs. (69) and (70), a
corresponding trial liquid interface function and its first
two derivatives are obtained from Eq. (71) and evaluated
at the domain truncation point χ∗. The matrix equations
resulting from evaluation of the discretized integral equa-
tions for ψ and φ in Eqs. (94) and (95), subject to the
boundary values set by the asymptotic forms of ψ and
φ and their first derivatives up through the k = 4 terms,
are solved by QR decomposition to obtain the nodal val-
ues for the velocity potential ψ and the electric field
strength ∂φ/∂n on γ . A Newton-Raphson method is then
applied iteratively to adjust parametrization of the bound-
ary γ until ψ and φ satisfy the time-independent form of
the surface Bernoulli equation in Eq. (50). The Jacobian
matrix at each Newton step is numerically approximated
by perturbations to γ along the boundary normals.

A. Results showing subconical, superconical, and
mixed-conical flow

Plotted side by side in Fig. 8(a) in cylindrical coordi-
nates are results from numerical solutions for two values
of a0 (leading-order coefficient in the velocity potential
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ψ) and the same value of b0 (leading-order coefficient in
the electric potential φ). The left image in Fig. 8(a) shows
subconical flow, where the liquid surface lies below the
Taylor cone envelope and where the liquid in the tip and
bulk region advance toward the conical apex in unison,
as sketched on the right in Fig. 5(a). As discussed ear-
lier, inertial effects generate a velocity field with angular
dependence—in this example, the closer the coordinate
is to the central axis, the more vertically aligned is the
flow. Closer inspection of the pressure contours just below
the liquid surface reveals very small interface oscillations
due to capillary effects. Keller and Miksis [53] first identi-
fied similar oscillations in simulations of two-dimensional
fluid wedges recoiling in vacuum. They reported how ini-
tial retraction of the wedge tip generates capillary-inertial
waves that propagate away from the vertex with diminish-
ing magnitude. Sierou and Lister [44] confirmed similar
phenomena in boundary integral simulations of postcapil-
lary pinchoff in a fluid thread. We leave it to future work
to establish whether the wavelength of surface oscillations
associated with electrified capillary-inertial waves obeys
the same scaling with distance and time as the capillary-
inertial waves originally reported by Keller and Miksis. We
surmise this will be the case based on the fact that in this
current study, the capillary, Maxwell and kinetic pressure
in the surface Bernoulli equation scale similarly to leading
order.

The right image in Fig. 8(a) depicts a velocity potential
describing the original solution by Zubarev [4] for iner-
tialess flow. Here, the asymptotic velocity potential scales
as 1/r and not r1/2 (i.e., a0 = 0 and a1 = 0.23). Unlike
the ballistic flow to the left, the majority of the flow near
the tip is now dominated by the radial dependence of
the asymptotic potential, which generates isobaric curves
that are mostly spherically symmetric. The velocity and
interface field manifest superconical flow, where the inter-
face lies above the conical envelope and the fluid in the
tip and nearby bulk recede from the conical apex in uni-
son, as sketched in Fig. 5(b). The interface again exhibits
small-scale oscillations due to electrified capillary waves.
Given negligible inertial effects, the velocity field near the
interface seems to be more strongly influenced by the sur-
face stagnation points, which punctuate regions of flow
reversal.

Plotted side by side in Fig. 8(b) in cylindrical coordi-
nates are results for equal values of a0 and two different
values of b0. The flow profile in the left image corresponds
to a mixed-conical configuration, where the liquid near
r = 0 advances toward the conical apex from below while
the nearby bulk fluid recedes from that point, as sketched in
Fig. 5(c). The choice b0 = 0 enforce no electric field—the
flow profile therefore depicts liquid motion resulting solely
from capillary and inertial forces. This field is reminiscent
of behavior subsequent to capillary pinchoff after strong
droplet elongation as reported by Sierou and Lister [44].
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FIG. 8. Numerical solutions (in cylindrical coordinates)
obtained from the boundary integral patching technique show-
ing the liquid interface shape (cyan curve), velocity field (black
arrows), and pressure contours (dark gray curves, constant incre-
ments, red > blue) for the free parameter values (a0, b0) indi-
cated. (a) Left image: subconical configuration for a0 = −1.36
and b0 = 1.15. Right image: superconical configuration for a0 =
0 or a1 = 0.23 and b0 = 1.15. (b) Left image: mixed-conical con-
figuration for a0 = −1.36 and b0 = 0. Right image: superconical
configuration for a0 = −1.36 and b0 = 1.15.

The right image in Fig. 8(b) corresponds to a superconical
configuration with tip and interior fluid retraction toward
the conical apex, as shown in Fig. 5(b). The change in sign
of a0 from that in Fig. 8(a) generates a different tip shape
that protrudes beyond the conical envelope, indicative of a
postsingularity event.

The numerical solutions yield a multiplicity of self-
similar flow configurations depending on the input param-
eter values (a0, b0). Since b0 controls the magnitude of the
leading-order term in the asymptotic electric field, larger
values of b0 generate more conical-like tips. And while
in the self-similar frame the region about the liquid max-
imum at r = 0 resembles a spherical cap, we note that
in the laboratory frame, the corresponding tip will appear
quite conical since the scaling of the spatial coordinates
in Eq. (43) dictates that the radial and vertical extent of
this region must scale as τ 2/3. The cap therefore shrinks
rapidly as τ → ∞ while maintaining the same asymptotic
slope given by Taylor angle. This can be seen by compar-
ing the interface shape in Fig. 9(a)plotted in self-similar
coordinates, which matches exactly a case study by Burton
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FIG. 9. (a) Numerical solutions (in cylindrical coordinates)
obtained from the boundary integral patching technique show-
ing the liquid interface shape (cyan curve), velocity field (black
arrows), and pressure contours (dark gray curves, constant incre-
ments, red> blue) for a0 = −2.370 and b0 = 1.757. Superposed
dots (black) on the liquid interface represent data points extracted
from the inset image in Fig. 1(b) of Ref. [36]. (b) Boundary data
along γ from the numerical solutions in (a) showing the inter-
face shape h(γ ) (blue line), interface velocity potentialψ(γ ) (red
line) and interface electric field strength (∂φ/∂n)(γ ) (green line)
with increasing distance r. Thicker line segments at large radii
represent the leading-order solutions (k = 0) evaluated from Eqs.
(69)–(71) and Eqs. (72)–(74) given by ψ∞ = 0.989 703 a0 r1/2,
∂φ∞/∂r = 0.848 582 b0 r−1/2, and h∞ = c0 r for a0 = −2.370,
b0 = 1.757, and c0 = 0.860 437.

and Taborek [36], with their snapshots in real time plotted
in the laboratory frame shown in the inset image of Fig.
1(b) in Ref. [36]. What appears like a rounded cap in the
self-similar frame corresponds to a fairly sharp conical tip
in the laboratory frame.

B. Comparison with Burton and Taborek [36]
simulations

For decades, researchers have been interested in
quantifying the influence of charge transport on the shape

and emission of progeny drops during Coulombic fission.
For a perfectly conducting mass like a liquid metal, the
electrical conductivity is assumed infinite and any excess
charge on the surface redistributes instantaneously in order
to maintain equipotential conditions. This is in line with
the estimate in Sec. II C. The charge density and elec-
tric field therefore depend purely on geometry and not the
advection of charge. In a seminal paper in 2011, Burton
and Taborek [36] simulated the deformation accompany-
ing Coulombic fission of an isolated inviscid droplet of
perfectly conducting liquid of density ρliq of sufficiently
high surface charge density embedded within an exterior
fluid of lower of zero density. Their numerical simula-
tions revealed formation of self-sharpening tips at opposite
ends of a droplet in which the apical values of the sur-
face charge density and interface curvature underwent
strong divergence in finite time. As expected, progeny
droplets are only observed with liquids of finite conductiv-
ity and not perfectly conducting liquids. Significantly, they
uncovered robust power-law growth spanning an incredi-
ble 12 decades in time in which the apex curvature scaled
as 0.604τ−2/3 and the surface charge density scaled as
0.925τ−1/3.

We compare our results to their simulations (not shown
here) by magnifying the inset image of Fig. 1(b) in Ref.
[36] showing multiple snapshots in time of a liquid tip
evolving into a dynamic cone. The boundary data points
for 20 such snapshots are extracted and transformed to
self-similar coordinates. Although no length scale accom-
panied the plot, we determine the correct overall isotropic
scale by conducting a least-squares fit between their trans-
formed data sets and our results for coefficient values a0 =
−2.37 and b0 = 1.757. This comparison yields a value of
h = −0.608 and |n · ∇φ|r=0 = 0.922. Shown in Fig. 9(a)
are the self-similar data points extracted from Burton and
Taborek [36] superposed on the interface shape from our
boundary integral patching technique. The agreement is
excellent. Plotted in Fig. 9(b) are results extracted from
our boundary integral simulations showing the behavior
of the interface height, surface velocity potential, and sur-
face electric field strength with increasing radial distance
r, confirming the asymptotic behavior in Eqs. (69)–(71).

VI. CONCLUSION

In this work, we examine in detail the dynamic evo-
lution of an axisymmetric protrusion in an electrically
stressed liquid metal. Estimates provided indicate why a
liquid metal is well approximated as a perfectly conduct-
ing inviscid fluid and so the electrohydrodynamic analysis
takes full advantage of the Bernoulli equation and kine-
matic boundary condition for specifying interface evolu-
tion. Based on previous work by Zubarev and co-workers,
as well as interface dynamics known to occur in capillary-
inertial systems just prior or subsequent to pinchoff, the
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analysis predicates that protrusion growth is governed by
a self-similar blowup process in which the kinetic, capil-
lary, and Maxwell pressure contribute equally to leading
order. The complexity of the coupled set of equations and
boundary conditions preclude analytic solution except in
the far field. Interestingly, these competitive forces allow
asymptotic solutions to be found which in the far field to
leading order adopts the shape of a Taylor cone with an
interior angle given by the classic Taylor angle. This shape,
however, when transformed back to the laboratory frame,
defines a dynamic cone and not the conventional static
Taylor cone. The corresponding asymptotic solutions for
the velocity potential, electric field potential and interface
function represent a two-parameter family of self-similar
solutions prone to blowup in finite time. By invoking time-
reversal symmetry inherent to inviscid flow, we illustrate
liquid formations describing subconical, superconical, and
mixed-conical flow in which the interface defining the
liquid-tip region appears below, above, or in a mixed state
with regard to the Taylor conical envelope.

To obtain the complete solution, valid throughout the
near- and far-field domain, we implement a boundary
integral patching technique. In contrast to conventional
boundary integral calculations on semi-infinite domains
in which boundary contributions typically decay to zero
and are neglected, the far-field boundary contributions in
the vacuum and liquid domain are non-negligible. The
formulation of the patching technique therefore directly
incorporates information from the far field through the
series expansions describing the asymptotic solutions. The
accuracy of this approach is confirmed by direct compar-
ison to a numerical study by Burton and Taborek [36] for
a system involving Coulombic fission of droplets, which
shows excellent agreement.

The results of our numerical simulations highlight the
crucial influence of inertial forces in the liquid apical
region as it undergoes rapid acceleration or deceleration
toward or away from the blowup point. Different param-
eter choices for the two-parameter family of asymptotic
solutions reveal a multiplicity of fluid configurations that
exhibit not only apical sharpening but tip bulging, tip sep-
aration flow, clusters of interface stagnation points from
capillary wave phenomena, and receding interface pro-
files reminiscent of recoil after capillary pinchoff. The
resulting interface shapes confirm that the local interior
half-angle within the liquid tip varies with position and can
be larger or smaller than the classic Taylor angle defining
the asymptotic envelope.

Experimental observations during actual LMIS oper-
ation often report phenomena such as tip pulsation,
droplet emission, liquid recoil and collapse. We wonder
if some of these processes may be related to progressive
amplification of the small interface oscillations observed
in our numerical solutions. This line of inquiry requires a
separate stability analysis, which can be conducted now

that the self-similar base state solutions are known. Such
an analysis will help further establish whether the elec-
tric capillary wave trains observed can trigger nonlinear
instability or whether the asymptotic constraint set by the
Taylor conical envelope represses such behavior.
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